

Radio Test Report R79065

Japanese Radio Law - Item 19 of Article 12 WIDE-BAND LOW-POWER DATA COMMUNICATIONS SYSTEMS Category WW (2400 - 2483.5 MHz) Category GZ (2471 - 2497 MHz)

MANUFACTURER: Summit Data Communications

MODEL(s): 802.11abg MSD30AG

TEST SITE: Elliott Laboratories, LLC

684 W. Maude Avenue Sunnyvale, CA 94085

SIGNATORY: Mark Briggs Staff Engineer

Revision History

Rev#	Made By	Date	Comments
1	-	27-Apr-10	First release
2	M Briggs	17-May-10	Added photograph of connector on the module.
			Added hardware revision: MSD30AG Rev G

Page 1 of 68 May 17, 2010

CIIIOUU An (近色 company	Table of Contents
Client: Summit Data Communications	Job Number: J78216
Model: 802.11abg MSD30AG	T-Log Number: T78634
Wodel. 602.1 Taby WSD30AG	Account Manager: Pamela Tucker
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmurski

Product Information

Antenna Characteristics

Summit SDCCF22G

Larsen, R380.500.314

Cisco Air-Ant 4941

Huber+Suhner, SOA 2459/360/5/0/V_C

Transmitter Characteristics - Band WW, Digital Modulation

Frequency Error

Occupied Bandwidth

Transmitter Unwanted (Spurious) Emissions

Antenna Power and EIRP

Transmitter Characteristics - Band GZ, Direct Sequence Modulation

Frequency Error

Occupied Bandwidth

Transmitter Unwanted (Spurious) Emissions

Antenna Power and EIRP

Secondary Radiated Emissions

Test Equipment

Page 2 of 68 May 17, 2010

EIIOTT An WIAT company	Product Information
Client: Summit Data Communications	Job Number: J78216
Model: 802.11abg MSD30AG	T-Log Number: T78634
Widdel. 602. Haby WSDS0AG	Account Manager: Pamela Tucker
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmurski

Product Information

Product Information

FII: - 44

The Summit Data Communication model SDC-MSD30AG is an 802.11 abg Mini SDIO Radio Module for installation by system integrators. The serial number of the sample tested was 1000FC5

EUT Software

Summit Client Utility (SCU) - Driver V3.01.13, SCU V2.03.42 Summit Regulatory Utility (SRU) - V3.1.13

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Test Environment

Temperature: 15-30 °C Rel. Humidity: 20-75 % Pressure: 86-106 kPa

Product Power Supply - Determination of Voltage Regulator

The device is designed to be powered from a nominal voltage of:

3.3 Vdc

Testing performed at voltage extremes, as the regulator and regulator information is not accessible.

Page 3 of 68 May 17, 2010

An WZAT company	Product Information
Client: Summit Data Communications	Job Number: J78216
Model: 802.11abg MSD30AG	T-Log Number: T78634
Wiodel. 602. Haby WSDS0AG	Account Manager: Pamela Tucker
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmurski

RF Accessibility (Article 2, Item (19) Notice 88 Appendix 43, 44, 45) Requirement

The EUT shall be constructed in such a way that sensitive RF parts, (like modulation and oscillator parts) cannot be reached easily by the user. These parts shall be covered by soldered metal caps or glue or by other mechanical covers. If the covers are fixed with screws, these shall be not the common type(s) like a Phillips, but special versions like Torx, so that the user cannot open the device with common tools.

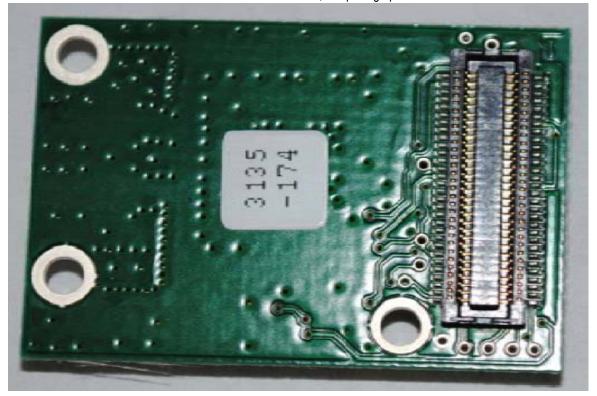
Results

The outer enclosure covers all of the rf sensitive circuitry with the exception of the antenna connectors. The outer case is not designed to be removed (see first set of pictures below).

Metal cover is soldered into place over rf circuitry

Page 4 of 68 May 17, 2010

Elliott An AZAS company	Product Information
Client: Summit Data Communications	Job Number: J78216
Madal, 902 11 aba MCD20AC	T-Log Number: T78634
Model: 802.11abg MSD30AG	Account Manager: Pamela Tucker
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmurski


Module Connector

Requirement

Modular approval is only permitted for devices with an interface connector. Modular approval is not allowed for modules that are soldered directly into the host system.

Results

The module uses a connector found on the back-side of the circuit board, see photograph below.

Page 5 of 68 May 17, 2010

Elliott An ATAS company	Antenna Characterisitics
Client: Summit Data Communications	Job Number: J78216
Model: 802.11abg MSD30AG	T-Log Number: T78634
iviouei. 602.1 Taby ivioD30AG	Account Manager: Pamela Tucker

RADIO EQUIPMENT USED FOR 2.4 GHz BAND WIDE-BAND LOW-POWER DATA COMMUNICATIONS SYSTEM (Radio station using 2400 - 2483.5 MHz)

Contact: Jerry Pohmurski

Antenna Gain(s)

Standard: Japanese Radio Law - Item 19 of Article 12

Antenna	Mode	Requirement	Antenna Gain	Result
Summit SDC-CF22G			0 dBi	Pass
Larsen, R380.500.314	802.11b and 802.11g	Omni-directional antennas:	1.6 dBi	Pass
Cisco Air-Ant 4941	(2400-2483.5MHz)	Maximum eirp allowed is 12.15dBm/MHz.	2.0 dBi	Pass
Huber+Suhner, SOA 2459/360/5/0/V C			3 dBi	Pass

Antenna Gain

Refer to attached data sheets showing antenna gain and pattern for each antenna.

Page 6 of 68 May 17, 2010

	Elliott	Antenna Characterisition
	An AZAS company Summit Data Communications	Job Number: J78216
	802.11abg MSD30AG	T-Log Number: T78634
		Account Manager: Pamela Tucker
tandard:	Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmursk
	Summit S	DC-CF22G

Page 7 of 68 May 17, 2010

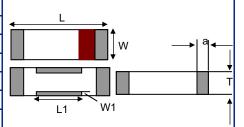
"High Frequency Ceramic Solutions"

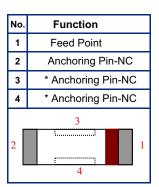
2450 MHz Antenna

P/N 2450AT42B100

Ground Clearance Requirements Minimized

Detail Specification: 11/20/2008 Page 1 of 3

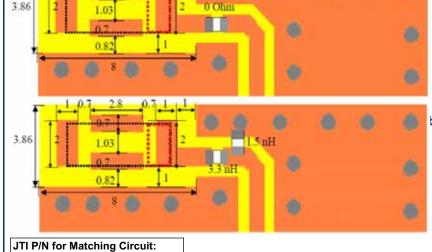

General Specifications


Part Number	2450AT42B100
Frequency Range	2400 - 2500 Mhz
Peak Gain	0 dBi typ. (XZ-V)
Average Gain	-1.5 dBi typ. (XZ-V)
Return Loss	9.5 dB min.

Input Power	3W max.
Impedance	50 Ω
Operating Temperature	-40 to +85°C
Reel Quanity	2,000

Mechanical Dimensions

ln	mm
0.197 ± 0.008	5.00 ± 0.20
0.079 ± 0.008	2.00 ± 0.20
0.102 ± 0.008	2.60 ± 0.20
0.020 ± 0.008	0.50 ± 0.20
0.079 +.004/008	2.00 +0.1/-0.2
0.020 ± 0.012	0.50 ± 0.30
	0.197 ± 0.008 0.079 ± 0.008 0.102 ± 0.008 0.020 ± 0.008 0.079 +.004/008



Mounting Considerations

Mount these devices with brown mark facing up. Units: mm

Line width should be designed to provide 50Ω impedance matching characteristics.

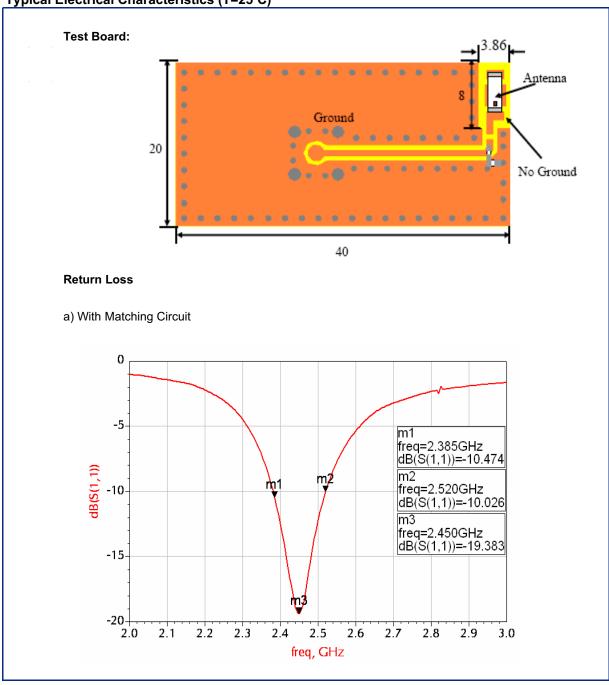
* Note: Pins 3 & 4, although "No Connect", must be soldered to its PCB pads for proper electrical operation

a) Without Matching Circuit

b) With Matching Circuit

Johanson Technology, Inc. reserves the right to make design changes without notice.

All sales are subject to Johanson Technology, Inc. terms and conditions.


Inductor (1.5nH): L-07C1N5SV6T Inductor (3.3nH): L-07C3N3SV6T

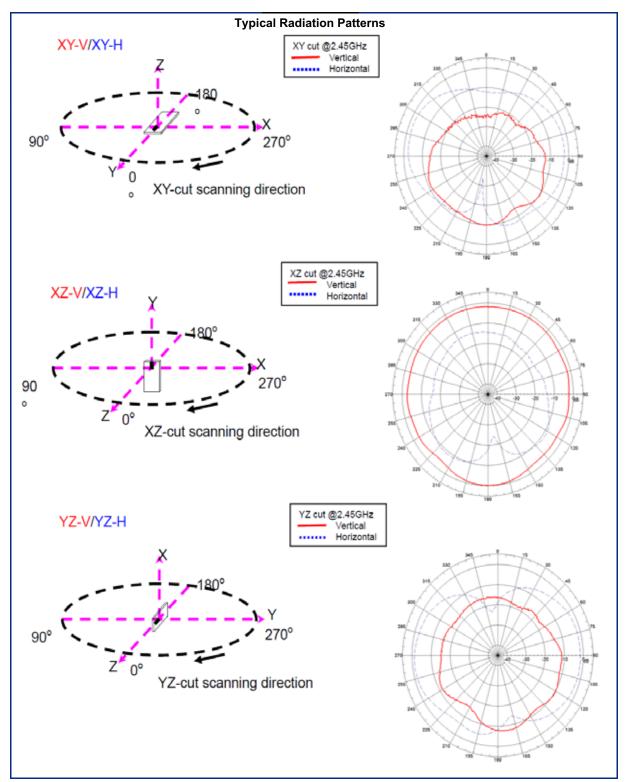
"High Frequency Ceramic Solutions"

2450 MHz Antenna P/N 2450AT42B100

Detail Specification: 11/20/08 Page 2 of 3

Typical Electrical Characteristics (T=25°C)

Johanson Technology, Inc. reserves the right to make design changes without notice.


All sales are subject to Johanson Technology, Inc. terms and conditions.

"High Frequency Ceramic Solutions"

2450 MHz AntennaDetail Specification: 11/20/08

P/N **2450AT42B100**Page 3 of 3

Johanson Technology, Inc. reserves the right to make design changes without notice. All sales are subject to Johanson Technology, Inc. terms and conditions.

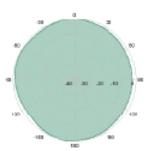
	Elliott An AZES* company	Antenna Characterisition
	Summit Data Communications	Job Number: J78216
		T-Log Number: T78634
	802.11abg MSD30AG	Account Manager: Pamela Tucker
ndard:	Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmursk
	Huber+Sunner, S	OA 2459/360/5/0/V_C

Page 11 of 68 May 17, 2010

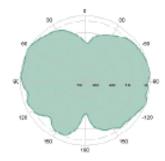
HUBER+SUHNER® SENCITY® ANTENNA

FOR WIRELESS COMMUNICATION

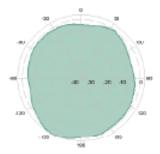
SOA 2459/360/5/0/V C

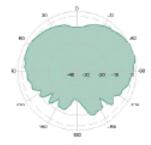

Technical Data

Electrical Properties			
Frequency range	2400 - 2500MHz	5150 - 5875MHz	
Impedance	50 Ω		
VSWR	≤ 2		
Polarization	Ninear, vertical		
Gain	3)dBi	6.5dB	
10 dB beamwidth horizontal	360°	360°	
10 dB beamwidth vertical	140°	60°	
Max. power	9:1 W (CW)-at 25°C	·	


Mechanical Properties	
Operating temperature range	€ 40°C to +) 80°C
Storage temperature range	- 40°C to + 80°C

Available Types	Article no.	
1399.99.0020	84038866	Pigtail with UFL connector (0.24m)


Documents			/
01.02.0777	security instruction		


Horizonial 2450MHz

Vertical 2450MHz

Horizonial 5600MHz

Vertical 5600MHz

HUBER+SUHNER is certified according to ISO 9001 and ISO 14001

WAIVER

It is exclusively in written agreements that we provide our oustomers with warrants and representations as to the behinical contained specifications and/or the fitness for any particular purpose. The facts and figures herein are carefully compiled to the best of our knowledge, but they are intended for general informational purposes only.

HUBER+SUHNER - Excellence in Connectivity Solutions

Document no.: 01.02.1419 Issue no.: 3

Supersedes: 05.2007

Uncontrolled Copy
Issued/Checked/Released:

Last amended:

HUBER+SUHNER HUBER+SUHNER AG

RF Technology 9100 Herisau, Switzerland Fhone +41 (0)71 353 41 11 Fax +41 (0)71 353 47 51

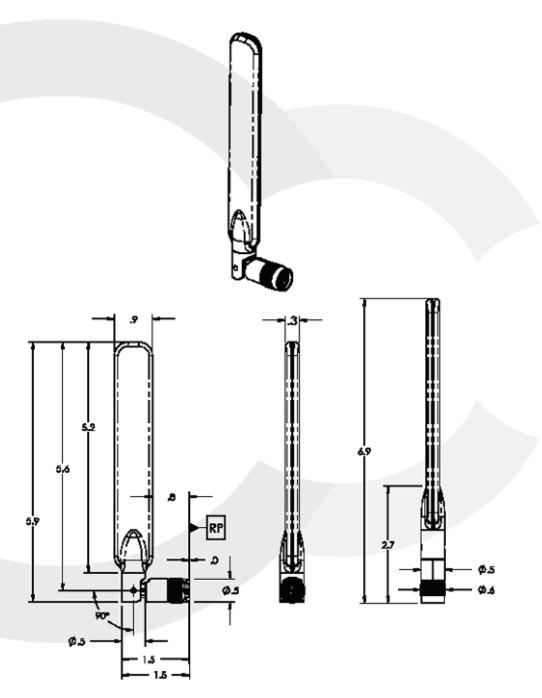
www.hubersuhner.com

4863/4174/04.2007 4863/05.2007

Elliott Antenna Characterisi		cterisitics		
	Summit Data Communications	Job Number:	J78216	
Model: 8	802.11abg MSD30AG	T-Log Number:	T78634	
		Account Manager:	Pamela Tucker	
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski	
Larsen, R380.500.314				

Page 13 of 68 May 17, 2010

TECHNICAL DATA SHEET



Dual Band Swivel Mount Dipole RP-TNC Blade

2.40-2.50/4.90-5.90 GHz

R380.500.314

Series : ANTENNA

All dimensions are inches

Issue: 0717

Pulse

TECHNICAL DATA SHEET

(ARSEN* Page 2 of 4

Dual Band Swivel Mount Dipole RP-TNC Blade

R380.500.314

2.40-2.50/4.90-5.90 GHz

Series : ANTENNA

ELECTRICAL SPECIFICATIONS

2.40-2.50/4.90-5.90 GHz Frequency:....

50 Ω Nominal Impedance :

VSWR :..... 2:1 Max

Gain (Radiating element):.... $1.6/5.0 \text{ dBi} \pm 1 \text{ dB}$

Radiation Pattern

HPBW in Horizontal Plane: 360 ° ± 2 °

Ripple level in Horizontal Plane: ±3 dB Max

HPBW in Elevation

85 ° Low Band:

High Band: 30 °

Polarization:.... Linear Vertical

Connector type : Reverse Polarity TNC

Cable type : RG316

Issue: 0717

Pulse

TECHNICAL DATA SHEET

ARSEN® Page 3 of 4

Dual Band Swivel Mount Dipole RP-TNC Blade

R380.500.314

2.40-2.50/4.90-5.90 GHz

Series : ANTENNA

° ± 4°

MECHANICAL SPECIFICATIONS

Plastic radome : ABS+PC Color :.... Black Flammability Rating :.... V-0 UL 94 Weight : 1.2 oz Overall length: 6.9 Inches 5.9 Inches Bent Fixing system : Azimuth adjustment $^{\circ} \pm 4^{\circ}$

Elevation adjustment ENVIRONMENTAL SPECIFICATIONS

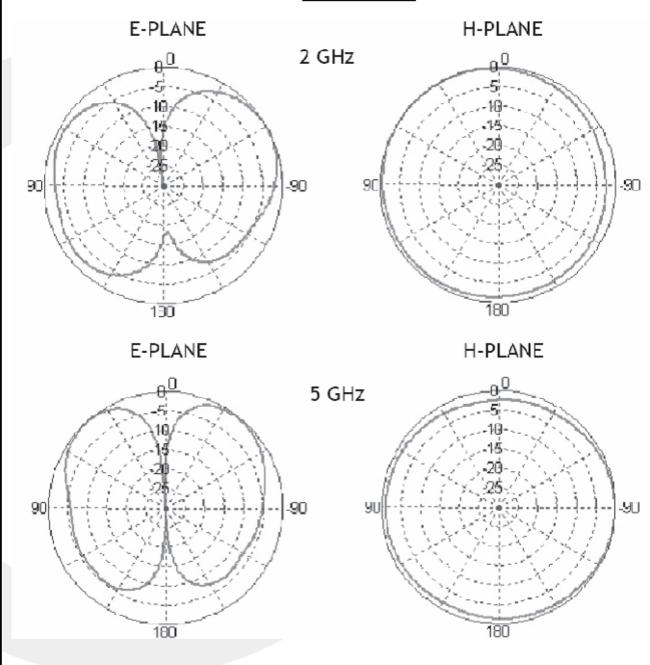
-30/+70 ° C Operating temperature :.... -40/+85 ° C

95% @ 24° C Humidity:

OTHER SPECIFICATIONS

Issue: 0717

Page 4 of 4


Dual Band Swivel Mount Dipole RP-TNC Blade

2.40-2.50/4.90-5.90 GHz

R380.500.314

Series: ANTENNA

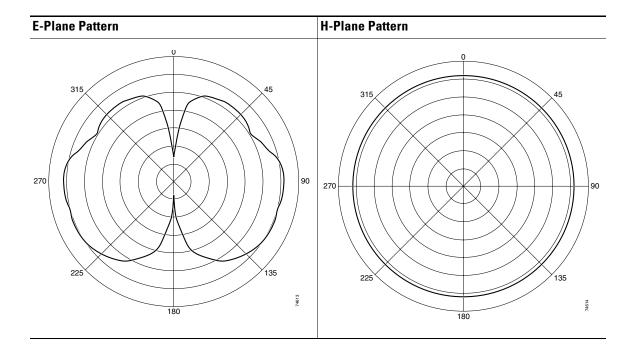
Pattern Data

Issue: 0717

Model: Summit Data Communications Job Number: J78216	Elliott An AZAS company	Antenna Characterisitio
Model: 802.11abg MSD30AG T-Log Number: T78634 Account Manager: Pamela Tucki andard: Japanese Radio Law - Item 19 of Article 12 Contact: Jerry Pohmur	Client: Summit Data Communications	Job Number: J78216
andard: Japanese Radio Law - Item 19 of Article 12 Contact: Jerry Pohmur		
		Account Manager: Pamela Tucker
Cisco Air-Ant 4941	andard: Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmurski
	Cisco	o Air-Ant 4941

Page 18 of 68 May 17, 2010

Cisco Aironet 2.4 Ghz Articulated Dipole Antenna (AIR-ANT4941)


Overview

This document outlines the specifications and description of the 2.2-dBi articulating dipole antenna. This antenna operates in the 2.4-2.5-GHz band and is designed for use with Cisco Aironet radio products utilizing a reverse-polarity threaded naval connector (RP-TNC).

Technical Specifications

Antenna type	Dipole
Operating frequency range	2402-2495 MHz
Nominal input impedance	50 Ω
2:1 VSWR bandwidth	2385 - 2515 Mhz
Peak gain	2 dBi
Polarization	Linear, vertical
E-Plane 3-dB beamwidth	70 degrees
H-Plane 3-dB beamwidth	Omnidirectional
Dimensions	5.5 in. (13 cm)
Weight	1 oz.
Connector type	RP-TNC plug
Environment	Indoor
Operating temperature range	32°F to 140°F (0°C to 60°C)

System Requirements

This antenna is compatible with any 2.4-GHz Cisco Aironet device that utilizes a RP-TNC plug.

Features

The antenna has an articulated base that can be rotated 360 degrees at the connection point and from 0 to 90 degrees at its knuckle. The articulated base is shown in the following illustration.

OL-3283-02

Obtaining Documentation

Cisco provides several ways to obtain documentation, technical assistance, and other technical resources. These sections explain how to obtain technical information from Cisco Systems.

Cisco.com

You can access the most current Cisco documentation on the World Wide Web at this URL:

http://www.cisco.com/univercd/home/home.htm

You can access the Cisco website at this URL:

http://www.cisco.com

International Cisco websites can be accessed from this URL:

http://www.cisco.com/public/countries_languages.shtml

Documentation CD-ROM

Cisco documentation and additional literature are available in a Cisco Documentation CD-ROM package, which may have shipped with your product. The Documentation CD-ROM is updated regularly and may be more current than printed documentation. The CD-ROM package is available as a single unit or through an annual or quarterly subscription.

Registered Cisco.com users can order a single Documentation CD-ROM (product number DOC-CONDOCCD=) through the Cisco Ordering tool:

http://www.cisco.com/en/US/partner/ordering/ordering_place_order_ordering_tool_launch.html

All users can order monthly or quarterly subscriptions through the online Subscription Store:

http://www.cisco.com/go/subscription

Ordering Documentation

You can find instructions for ordering documentation at this URL:

http://www.cisco.com/univercd/cc/td/doc/es inpck/pdi.htm

You can order Cisco documentation in these ways:

• Registered Cisco.com users (Cisco direct customers) can order Cisco product documentation from the Networking Products MarketPlace:

http://www.cisco.com/en/US/partner/ordering/index.shtml

 Nonregistered Cisco.com users can order documentation through a local account representative by calling Cisco Systems Corporate Headquarters (California, U.S.A.) at 408 526-7208 or, elsewhere in North America, by calling 800 553-NETS (6387).

Documentation Feedback

You can submit comments electronically on Cisco.com. On the Cisco Documentation home page, click **Feedback** at the top of the page.

0L-3283-02

You can e-mail your comments to bug-doc@cisco.com.

You can submit comments by using the response card (if present) behind the front cover of your document or by writing to the following address:

Cisco Systems Attn: Customer Document Ordering 170 West Tasman Drive San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance

Cisco provides Cisco.com, which includes the Cisco Technical Assistance Center (TAC) website, as a starting point for all technical assistance. Customers and partners can obtain online documentation, troubleshooting tips, and sample configurations from the Cisco TAC website. Cisco.com registered users have complete access to the technical support resources on the Cisco TAC website, including TAC tools and utilities.

Cisco.com

Cisco.com offers a suite of interactive, networked services that let you access Cisco information, networking solutions, services, programs, and resources at any time, from anywhere in the world.

Cisco.com provides a broad range of features and services to help you with these tasks:

- Streamline business processes and improve productivity
- Resolve technical issues with online support
- Download and test software packages
- Order Cisco learning materials and merchandise
- Register for online skill assessment, training, and certification programs

To obtain customized information and service, you can self-register on Cisco.com at this URL:

http://tools.cisco.com/RPF/register/register.do

Technical Assistance Center

The Cisco TAC is available to all customers who need technical assistance with a Cisco product, technology, or solution. Two types of support are available: the Cisco TAC website and the Cisco TAC Escalation Center. The type of support that you choose depends on the priority of the problem and the conditions stated in service contracts, when applicable.

We categorize Cisco TAC inquiries according to urgency:

- Priority level 4 (P4)—You need information or assistance concerning Cisco product capabilities, product installation, or basic product configuration. There is little or no impact to your business operations.
- Priority level 3 (P3)—Operational performance of the network is impaired, but most business operations remain functional. You and Cisco are willing to commit resources during normal business hours to restore service to satisfactory levels.

01-3283-02

- Priority level 2 (P2)—Operation of an existing network is severely degraded, or significant aspects
 of your business operations are negatively impacted by inadequate performance of Cisco products.
 You and Cisco will commit full-time resources during normal business hours to resolve the situation.
- Priority level 1 (P1)—An existing network is "down," or there is a critical impact to your business
 operations. You and Cisco will commit all necessary resources around the clock to resolve the
 situation.

Cisco TAC Website

The Cisco TAC website provides online documents and tools to help troubleshoot and resolve technical issues with Cisco products and technologies. To access the Cisco TAC website, go to this URL:

http://www.cisco.com/tac

All customers, partners, and resellers who have a valid Cisco service contract have complete access to the technical support resources on the Cisco TAC website. Some services on the Cisco TAC website require a Cisco.com login ID and password. If you have a valid service contract but do not have a login ID or password, go to this URL to register:

http://tools.cisco.com/RPF/register/register.do

If you are a Cisco.com registered user, and you cannot resolve your technical issues by using the Cisco TAC website, you can open a case online at this URL:

http://www.cisco.com/tac/caseopen

If you have Internet access, we recommend that you open P3 and P4 cases online so that you can fully describe the situation and attach any necessary files.

Cisco TAC Escalation Center

The Cisco TAC Escalation Center addresses priority level 1 or priority level 2 issues. These classifications are assigned when severe network degradation significantly impacts business operations. When you contact the TAC Escalation Center with a P1 or P2 problem, a Cisco TAC engineer automatically opens a case.

To obtain a directory of toll-free Cisco TAC telephone numbers for your country, go to this URL:

http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml

Before calling, please check with your network operations center to determine the Cisco support services to which your company is entitled: for example, SMARTnet, SMARTnet Onsite, or Network Supported Accounts (NSA). When you call the center, please have available your service agreement number and your product serial number.

Obtaining Additional Publications and Information

Information about Cisco products, technologies, and network solutions is available from various online and printed sources.

• The Cisco Product Catalog describes the networking products offered by Cisco Systems, as well as ordering and customer support services. Access the Cisco Product Catalog at this URL:

http://www.cisco.com/en/US/products/products_catalog_links_launch.html

0L-3283-02

Cisco Press publishes a wide range of networking publications. Cisco suggests these titles for new
and experienced users: Internetworking Terms and Acronyms Dictionary, Internetworking
Technology Handbook, Internetworking Troubleshooting Guide, and the Internetworking Design
Guide. For current Cisco Press titles and other information, go to Cisco Press online at this URL:

http://www.ciscopress.com

• Packet magazine is the Cisco quarterly publication that provides the latest networking trends, technology breakthroughs, and Cisco products and solutions to help industry professionals get the most from their networking investment. Included are networking deployment and troubleshooting tips, configuration examples, customer case studies, tutorials and training, certification information, and links to numerous in-depth online resources. You can access Packet magazine at this URL:

http://www.cisco.com/go/packet

• iQ Magazine is the Cisco bimonthly publication that delivers the latest information about Internet business strategies for executives. You can access iQ Magazine at this URL:

http://www.cisco.com/go/iqmagazine

• Internet Protocol Journal is a quarterly journal published by Cisco Systems for engineering professionals involved in designing, developing, and operating public and private internets and intranets. You can access the Internet Protocol Journal at this URL:

http://www.cisco.com/en/US/about/ac123/ac147/about_cisco_the_internet_protocol_journal.html

 Training—Cisco offers world-class networking training. Current offerings in network training are listed at this URL:

http://www.cisco.com/en/US/learning/le31/learning_recommended_training_list.html

CCVP, the Cisco logo, and Welcome to the Human Network are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn is a service mark of Cisco Systems, Inc.; and Access Registrar, Aironet, Catalyst, CCDA, CCDP, CCIE, CCIA, CCNP, CCSP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iP/TOV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, LightStream, Linksys, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PIX, ProConnect, ScriptShare, SMARTnet, StackWise, The Fastest Way to Increase Your Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

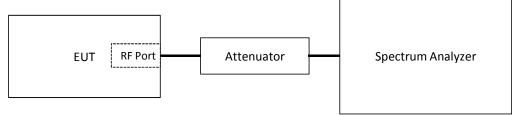
All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0711R)

Copyright © 2003 Cisco Systems, Inc. All rights reserved.

6 01-3283-02

Elliott

Transmitter Characteristics Test Data


	THE COMPANY		
Ī	Client: Summit Data Communications	Job Number:	J78216
	Madel 900 11aha MCD20AC	T-Log Number:	T78634
ı	Model: 802.11abg MSD30AG	Account Manager:	Pamela Tucker
ſ	Standard: Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

RADIO EQUIPMENT USED FOR 2.4 GHz BAND WIDE-BAND LOW-POWER DATA COMMUNICATIONS SYSTEM (Radio station using 2400 - 2483.5 MHz)

Summary of Results

Test Performed	Mode	Requirement	Measurement	Result
Frequency Error	802.11b 802.11g	50ppm or better	4.23 ppm	Pass
Occupied bandwidth (2400 - 2483.5MHz)	802.11b 802.11g	DSSS: 500kHz < BW < 26MHz OFDM: < 38MHz	DSSS: 15.61 MHz OFDM: 17.05 MHz	Pass
Spreading Rate (2400-2483.5MHz)	802.11b 802.11g	5 or more	802.11b: 8.2 802.11g: 17.05	Pass
OFDM Carrier Spacing	802.11g	-	52 carriers with a spacing of 0.3125MHz	•
Spurious Emissions	802.11b 802.11g	Below 2387MHz: < 2.5uW/MHz 2387 - 2400 MHz < 25uW/MHz 2483.5-2496.5MHz < 25uW/MHz (2497 - 2510 for #14) Above, 2496.5 MHz: 2.5uW/MHz	802.11b: 0.048uW @ 4823.77MHz 802.11g: 0.025uW @ 3250.25MHz	Pass
Antonno nouvor	802.11b	Maximum permitted: BW < 26MHz: 10mW/MHz BW < 38MHz: 5mW/MHz	Rated Power: 4.74 mW/MHz Deviation: - 33.2 % to -26.8 %	Pass
Antenna power	802.11g	Power Tolerance: -80% to +20%	Rated Power: 2.89 mW/MHz Deviation: -41.2 % to -18.8 %	Pass
EIRP	802.11b 802.11g	Omni-directional antennas: maximum eirp is 12.15dBm/MHz	9.8 dBm/MHz	Pass

Test Configuration

Test Environment

Temperature: 15-30 °C
Rel. Humidity: 20-75 %
Pressure: 86-106 kPa

Nominal Supply Voltage 3.3 Vdc (provided by host device)

Page 25 of 68 May 17, 2010

Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J78216
Modal:	Madali 000 44aba MCD20AC	T-Log Number:	T78634
Model: 802.11abg MSD30AG	Account Manager:	Pamela Tucker	
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Duty Cycle and Transmission Cycle Time

Data Rate	Duty Cycle	Transmission cycle time
Mbs	%	ms
1	100	N/A
11	99.5	0.05
6	99.3	0.05
54	94.5	0.05

Page 26 of 68 May 17, 2010

Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J78216
Model	Madal: 902 11aha MCD20AC	T-Log Number:	T78634
Model: 802.11abg MSD30AG	Account Manager:	Pamela Tucker	
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Run #1: Frequency Error

Date of Test: 3/29/2010 Test Engineer: Mehran Birgani

Test Location: Radio Lab

The center frequency was measured at nominal and extreme voltage conditions.

For OFDM modulation with no provision for operating with an unmodulated signal measurements were made on a **modulated** signal at the top, center and bottom channels. The operating frequency was determined by measuring the frequency of the carrier observed at the center of the waveform that appears as a small peak within the central null. The analyzer was configured with RB=300Hz VB=10**Hz**, peak detector and max hold, as this gave the cleanest signal.

For CCK modulation with no provision for operating with an unmodulated signal measurements were made on a **modulated** signal at the top, center and bottom channels. The operating frequency was determined by measuring the frequency at the null created at the center of the signal. The analyzer was configured with RB=300Hz VB=10Hz, peak detector and max hold, as this gave the cleanest signal.

Nominal Frequency (MHz) - 802.11b							
C	Center Channel 2437.0 High Channel 2472.0						
Measured Frequenc	y (MHz)			Frequ	ency Error	(ppm)	
Nominal -10%	Nominal	Nominal	+ 10%				
3.0 V	3.3 V	3.6	V	3.0 V	3.3 V	3.6 V	
2412.001656	2412.001707	2412.0	01997	0.69	0.71	0.83	
2437.009668	2437.009858	2437.0	09984	3.97	4.05	4.10	
2437.009658	2437.009903	2437.0	09903	3.96	4.06	4.06	
2472.001947	2472.002387	2472.0	02533	0.79	0.97	1.02	
	Measured Frequence Nominal -10% 3.0 V 2412.001656 2437.009668 2437.009658	Center Channel 2437.0	Center Channel 2437.0 Measured Frequency (MHz) Nominal -10% Nominal Nominal 3.0 V 3.3 V 3.6 2412.001656 2412.001707 2412.0 2437.009668 2437.009858 2437.0 2437.009658 2437.009903 2437.0	Center Channel 2437.0 High Measured Frequency (MHz) Nominal -10% Nominal Nominal + 10% 3.0 V 3.3 V 2412.001656 2412.001707 2412.001997 2437.009668 2437.009858 2437.009984 2437.009658 2437.009903 2437.009903	Center Channel 2437.0 High Channel Measured Frequency (MHz) Frequency (MHz) Nominal -10% Nominal -10% Nominal + 10% 3.0 V 3.3 V 3.6 V 3.0 V 2412.001656 2412.001707 2412.001997 0.69 2437.009668 2437.009858 2437.00984 3.97 2437.009658 2437.009903 2437.009903 3.96 2472.001947 2472.002387 2472.002533 0.79	Center Channel 2437.0 High Channel 2472.0	

Requirement (ppm): 50.0

Low Channel 2412.0	Ce	enter Channel 2437.0	ŀ	High Channel 2472.0					
	Measured Frequency (MHz) Frequency Error (ppm)								
Voltago	Nominal -10%	Nominal	Nominal + 10%	%					
Voltage	3.0 V	3.3 V	3.6 V	3.0 V	3.3 V	3.6 V			
Low Channel	2412.009664	2412.009709	2412.009770	4.01	4.03	4.05			
Center Channel	2437.009532	2437.009692	2437.010313	3.91	3.98	4.23			
High Channal	2472 000556	2/72 001510	2/72 001106	0.00	0.61	0.45			

Nominal Frequency (MHz) - 802.11g

Requirement (ppm): 50.0

Notes:

All testing performed at 1Mbs for 802.11b (CCK) and 6Mbs for 802.11g (OFDM).

Unless otherwise noted, TX Diversity switch was set to main only. Testing was performed on the Main connector.

Page 27 of 68 May 17, 2010

Transmitter Characteristics Test Data

Client: Summit Data Communications	Job Number: J78216
Model: 802.11abg MSD30AG	T-Log Number: T78634
Woder. 602.1 Taby WSD30AG	Account Manager: Pamela Tucker
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmurski

Run #2: Occupied bandwidth and spreading bandwidth

Date of Test: 3/30/2010 Test Location: Radio Lab Test Engineer: Mehran Birgani

The occupied bandwidth was measured with the spectrum analyzer configured according to the table below. The occupied bandwidth was determined from the 99% power bandwidth by determining the highest and lowest frequencies at which 99.5% of the power was captured and then subtracting the two numbers. the calculation was done by either the analyzer directly or via the software used to capture the plot. One plot for each mode tested is provided for reference.

The spreading bandwidth was measured with the spectrum analyzer configured according to the table below. The spreading bandwidth was the 90% power bandwidth determined by the highest and lowest frequencies at which 95% of the power was captured and then subtracting the two numbers. This calculation was done by either the analyzer directly or via the software used to capture the plot. One plot for each mode tested is provided for reference.

Instrument Settings and Test Requirements							
Modulation Type			Analyze	r settings	Bandwidth Requirement		
Modulation Type Span RB VB Other		Other	Occupied	Spreading			
OFDM (e.g. 802.11gn)	76-133	≤ 1140kHz		Sample detector, averaging (10 sweeps) ² , sweep time auto ¹	≤ 38.0MHz		
Direct Sequence (e.g. 802.11b)	52-91	≤ 780kHz	300kHz	Positive peak detector, max hold, sweep time auto ¹	≤ 26.0MHz	≥ 500kHz	

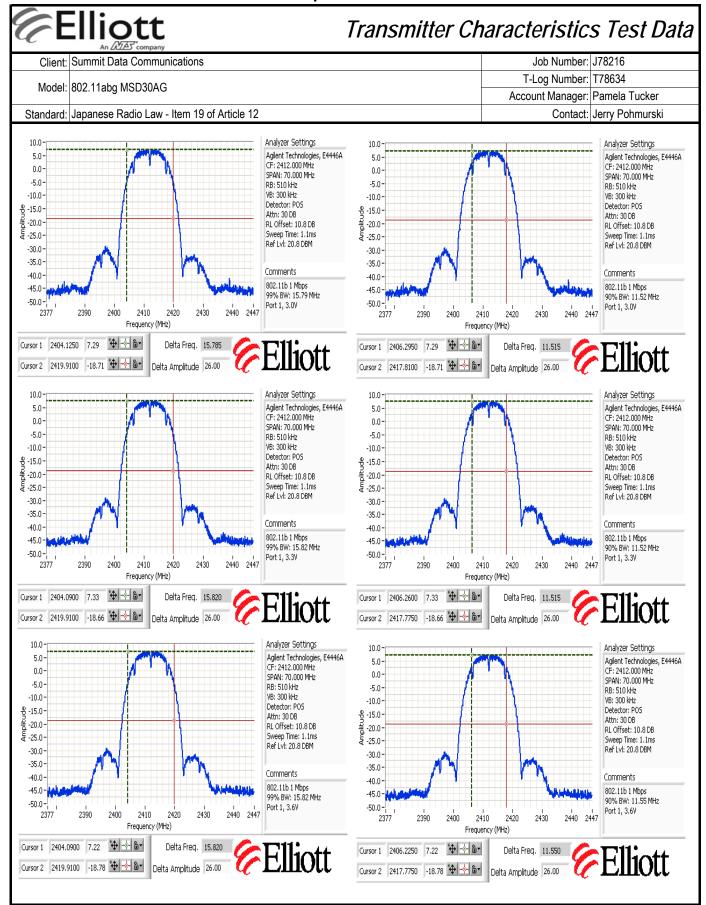
Note 1: For burst transmissions sweep time set to ensure dwell time in each bandwidth > transmission cycle time (sweep time = transmit cycle time x span/ measurement bandwidth)

Note 2: For burst transmissions trace set for max hold and detector set to positive peak

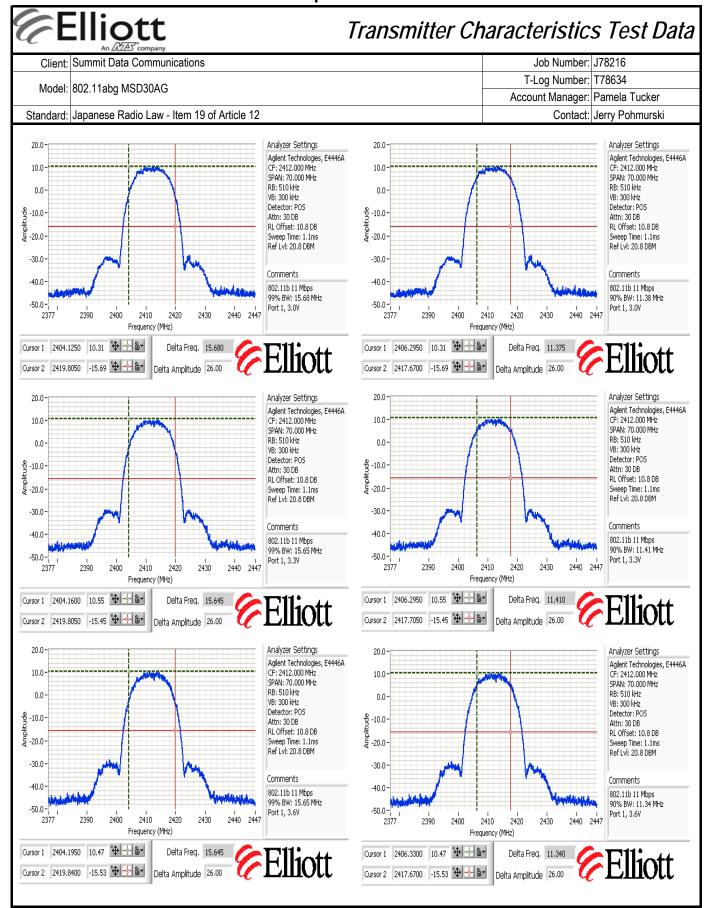
Test Results,	802.11b Mod	le (Direct Sec	quence, 500	kHz ≤ bandwidth	≤ 26MHz) - 99% Pwr Bandwidth	
				Manainal	100/	Manainal	

Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%
Chamile	Mode	FUIL	Chain	Dala Nale	3.0 V	3.3 V	3.6 V
1	802.11b	Main		1Mb/s	15.79	15.82	15.82
6	802.11b	Main		1Mb/s	15.79	15.79	15.79
6	802.11b	Aux		1Mb/s	15.79	15.79	15.79
13	802.11b	Main		1Mb/s	15.82	15.82	15.82
1	802.11b	Main		11Mb/s	15.68	15.65	15.65
6	802.11b	Main		11Mb/s	15.65	15.65	15.65
6	802.11b	Aux		11Mb/s	15.65	15.61	15.65
13	802.11b	Main		11Mb/s	15.65	15.65	15.65

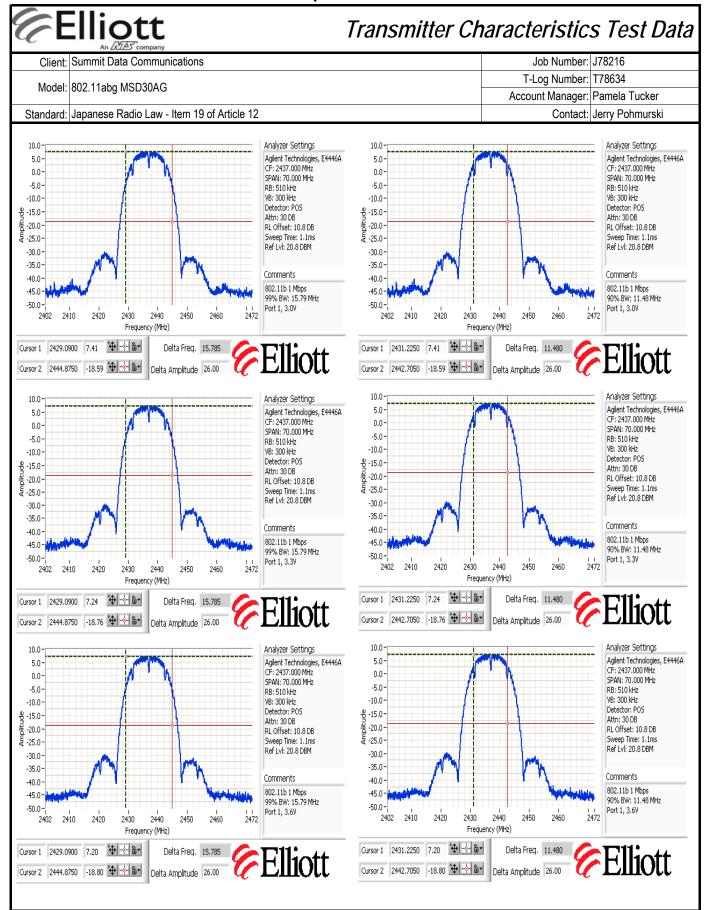
Test Results, 802.11b Mode (Direct Sequence, 500kHz ≤ bandwidth ≤ 26MHz) - 90% Pwr Bandwidth

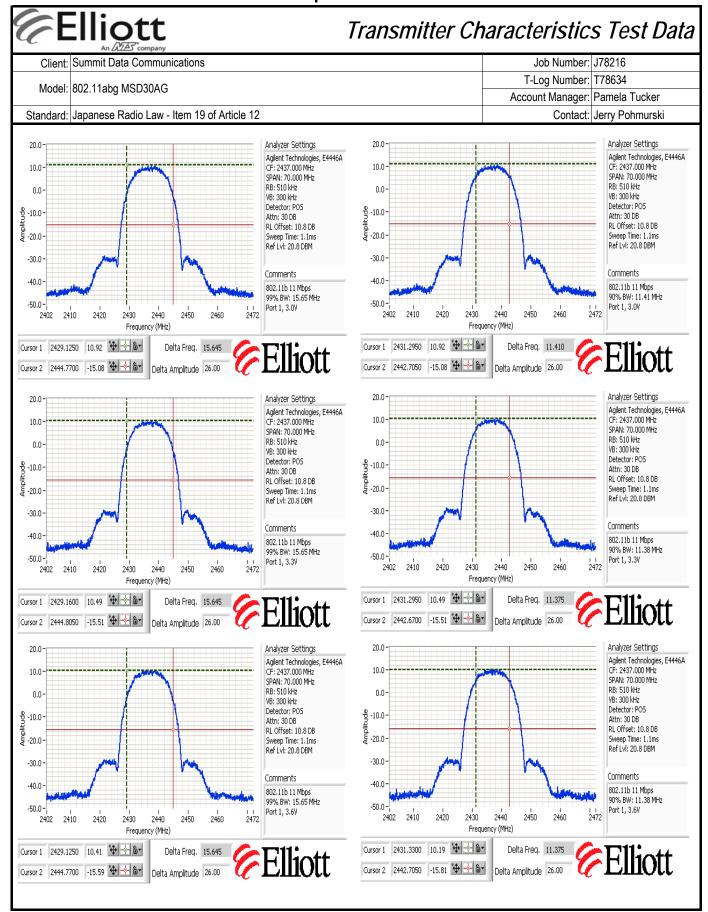

Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%
Charmer	Mode	FUIL	Chain	Dala Nale	3.0 V	3.3 V	3.6 V
1	802.11b	Main		1Mb/s	11.52	11.52	11.55
6	802.11b	Main		1Mb/s	11.48	11.48	11.48
13	802.11b	Main		1Mb/s	11.52	15.55	11.55
1	802.11b	Main		11Mb/s	11.38	11.41	11.34
6	802.11b	Main		11Mb/s	11.41	11.38	11.38
13	802.11b	Main		11Mb/s	11.38	11.38	11.38

Spreading bandwidth

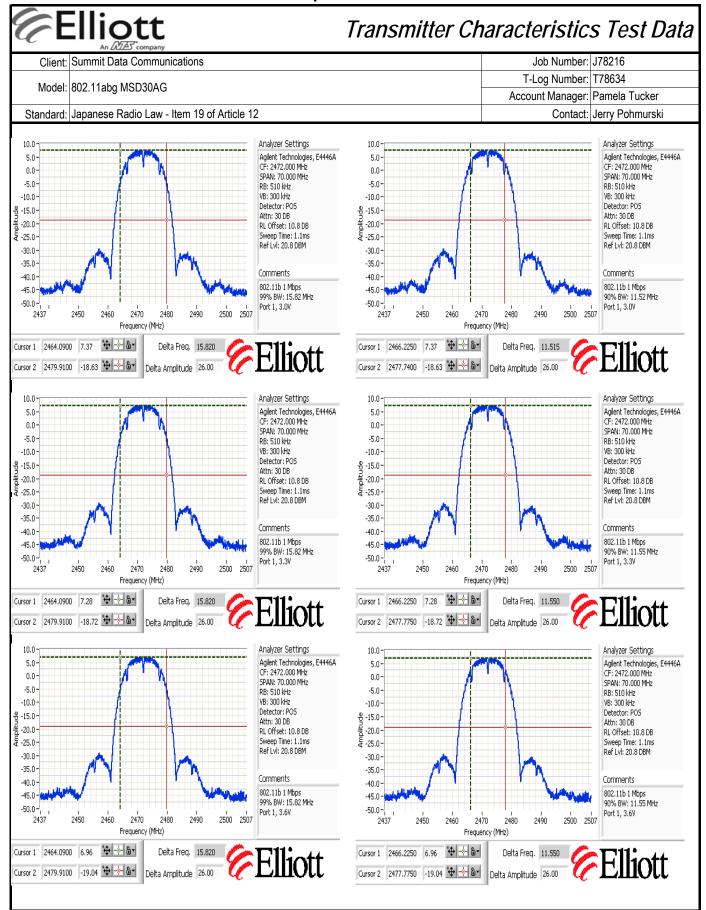

Symbol rate for 802.11b is 1Msym/s for 1Mb/s and 1.375Msym/s for data rates of 5.5Mb/s and above.

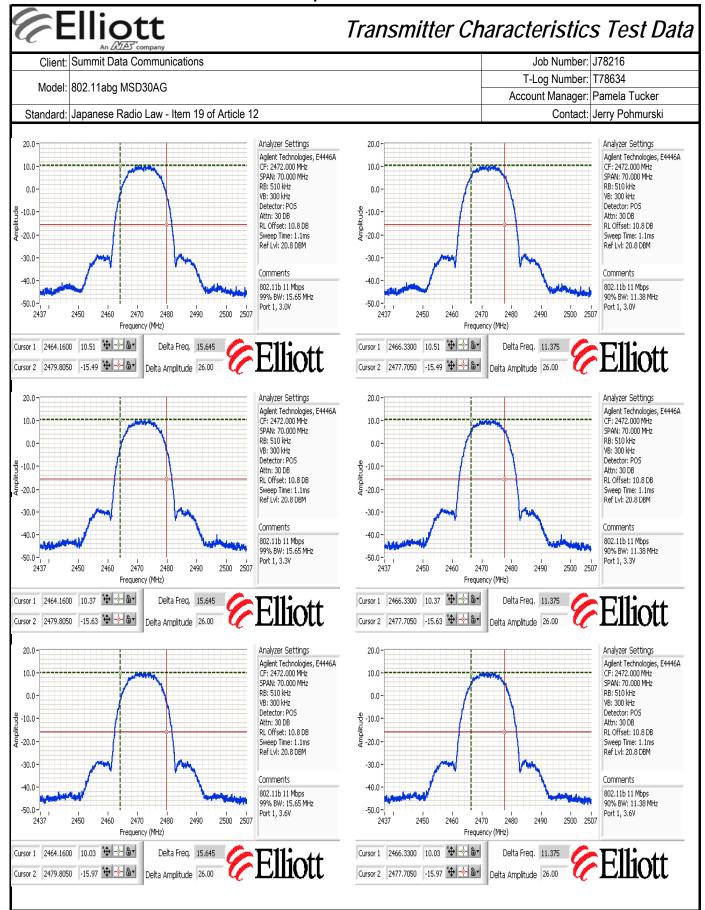
	Data rate	Symbol Rate (Msym/s)	90% Signal Bandwidth	Spreading rate	Requirement
2400 - 2483.5 MHz:	1Mb/s	1.000	11.48	11.5	5.0
2400 - 2483.5 MHz:	5.5Mb/s & 11Mb/s	1.375	11.34	8.2	5.0


Page 28 of 68 May 17, 2010


Page 29 of 68 May 17, 2010


Page 30 of 68 May 17, 2010


Page 31 of 68 May 17, 2010


Page 32 of 68 May 17, 2010

Page 33 of 68 May 17, 2010

Page 34 of 68 May 17, 2010

Page 35 of 68 May 17, 2010

Elliott

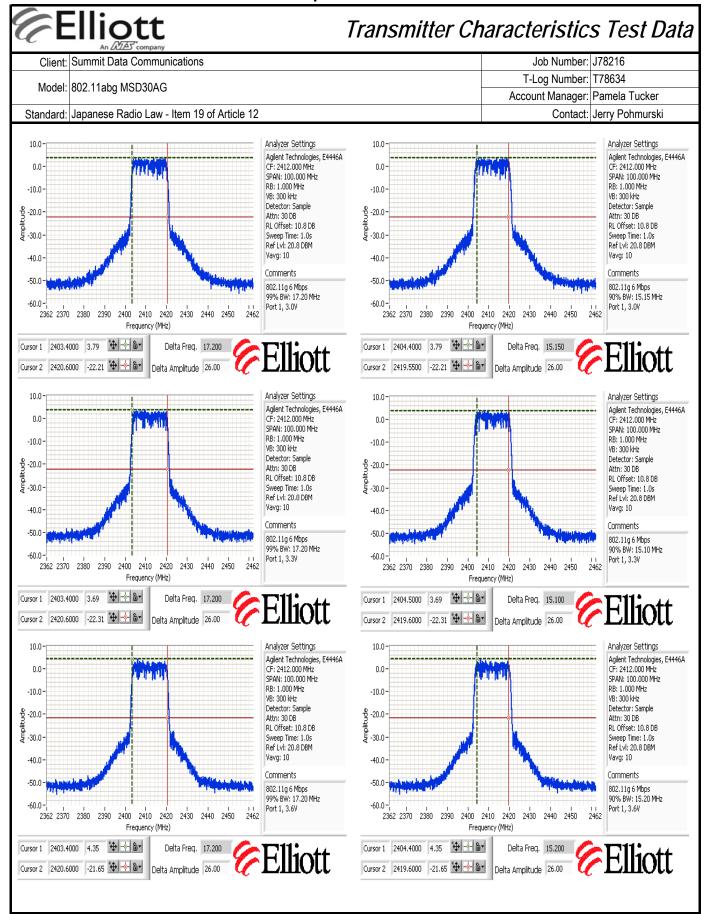
Transmitter Characteristics Test Data

This day of the state of the st						
Client:	Summit Data Communications	Job Number:	J78216			
Model:	902 11aha MCD20AC	T-Log Number:	T78634			
	802.11abg MSD30AG	Account Manager:	Pamela Tucker			
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski			

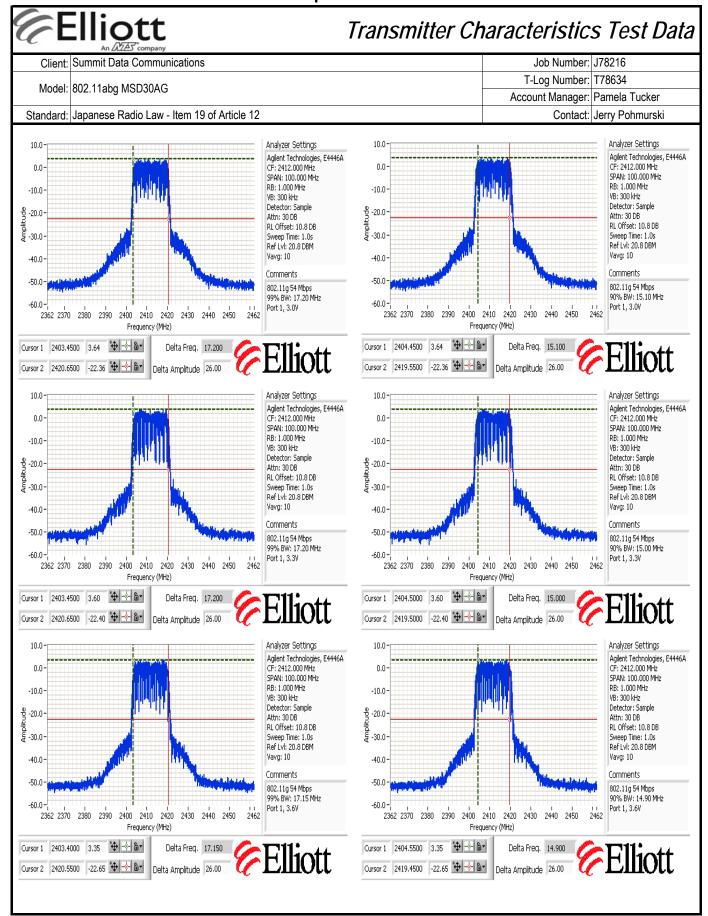
Test Results, 802.11g Mode (OFDM, 500kHz ≤ bandwidth ≤ 38MHz) - 99% Pwr Bandwidth

	rest results, social g mode (of bin, cooking a bandwidth a contrib) so in the bandwidth							
Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%	
Chamilei	Woue	1 OIL	Criairi	Data Nate	3.0 V	3.3 V	3.6 V	
1	802.11g	Main		6Mb/s	17.20	17.20	17.20	
6	802.11g	Main		6Mb/s	17.20	17.20	17.25	
6	802.11g	Aux		6Mb/s	17.20	17.15	17.05	
13	802.11g	Main		6Mb/s	17.30	17.25	17.25	
1	802.11g	Main		54Mb/s	17.20	17.20	17.15	
6	802.11g	Main		54Mb/s	17.40	17.20	17.20	
6	802.11g	Aux		54Mb/s	17.10	17.05	17.05	
13	802.11g	Main		54Mb/s	17.15	17.10	17.15	

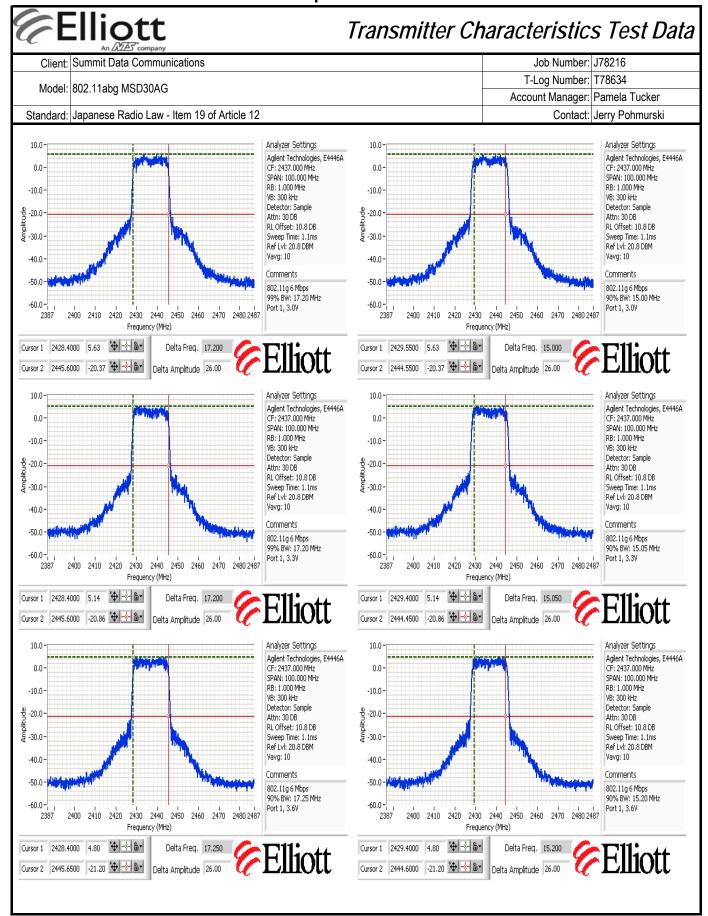
Test Results, 802.11g Mode (OFDM, 500kHz ≤ bandwidth ≤ 38MHz) - 90% Pwr Bandwidth

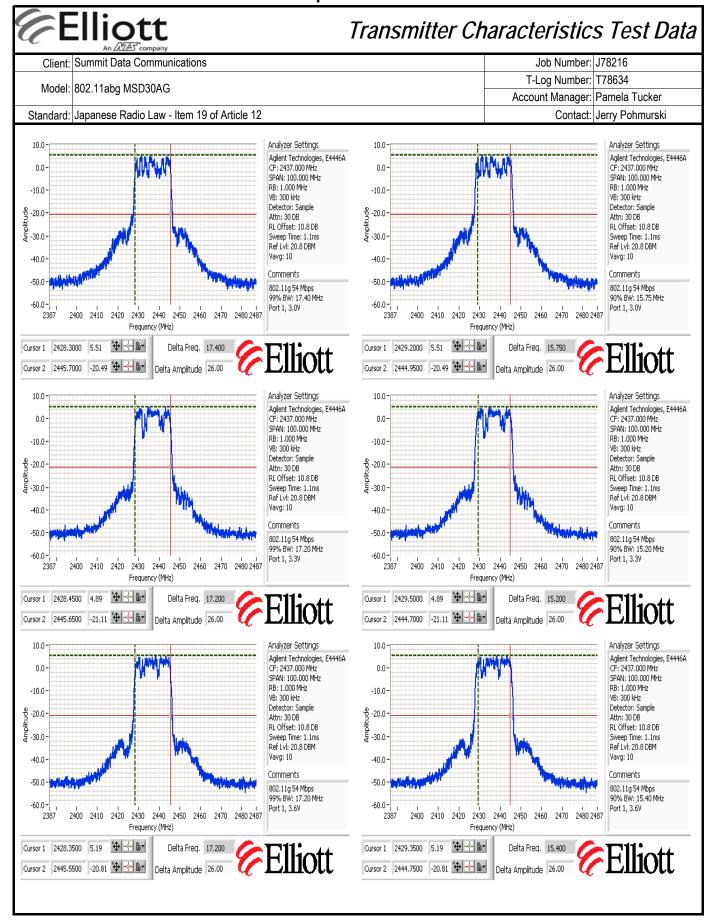

	root recease; court ig mode (or bin) cooking a bandwidth a contract of the bandwidth							
Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%	
Charmer	Wode	POIL	Chain	Dala Rale	3.0 V	3.3 V	3.6 V	
1	802.11g	Main		6Mb/s	15.15	15.10	15.20	
6	802.11g	Main		6Mb/s	15.00	15.05	15.20	
13	802.11g	Main		6Mb/s	15.15	15.10	15.05	
1	802.11g	Main		54Mb/s	15.10	15.00	14.90	
6	802.11g	Main		54Mb/s	15.75	15.20	15.40	
13	802.11g	Main		54Mb/s	14.90	15.10	15.05	

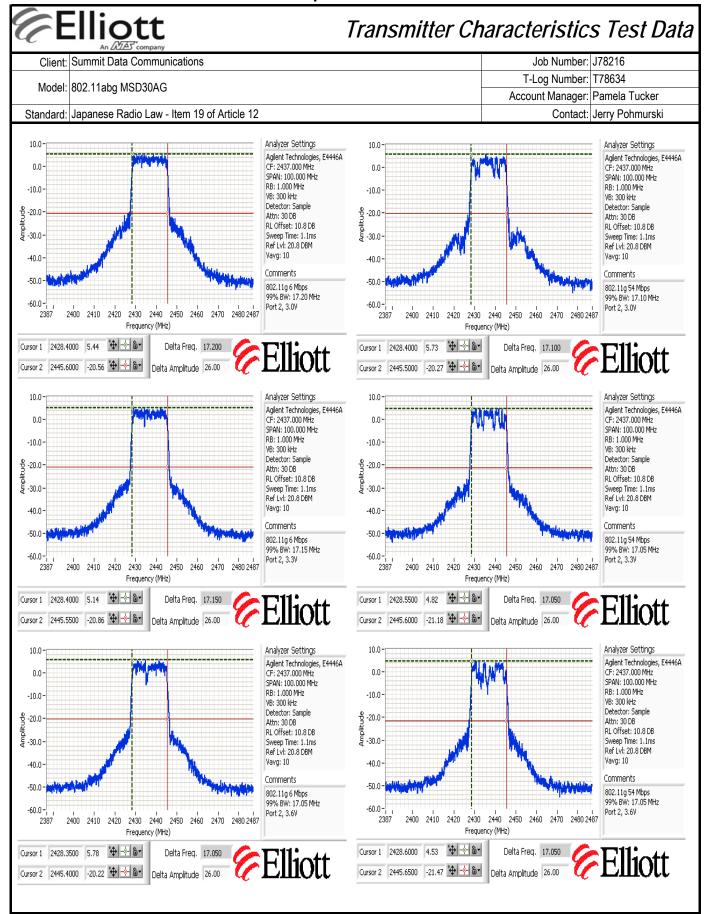
Spreading bandwidth

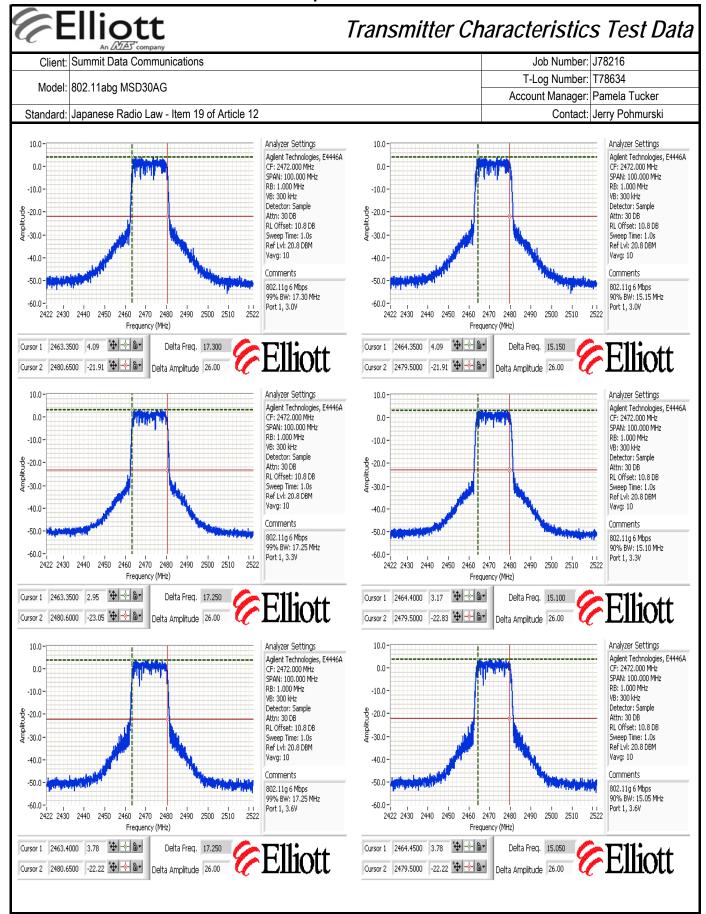

Symbol rate for 802.11g has a 4us period (250kHz symbol rate) for all data rates.

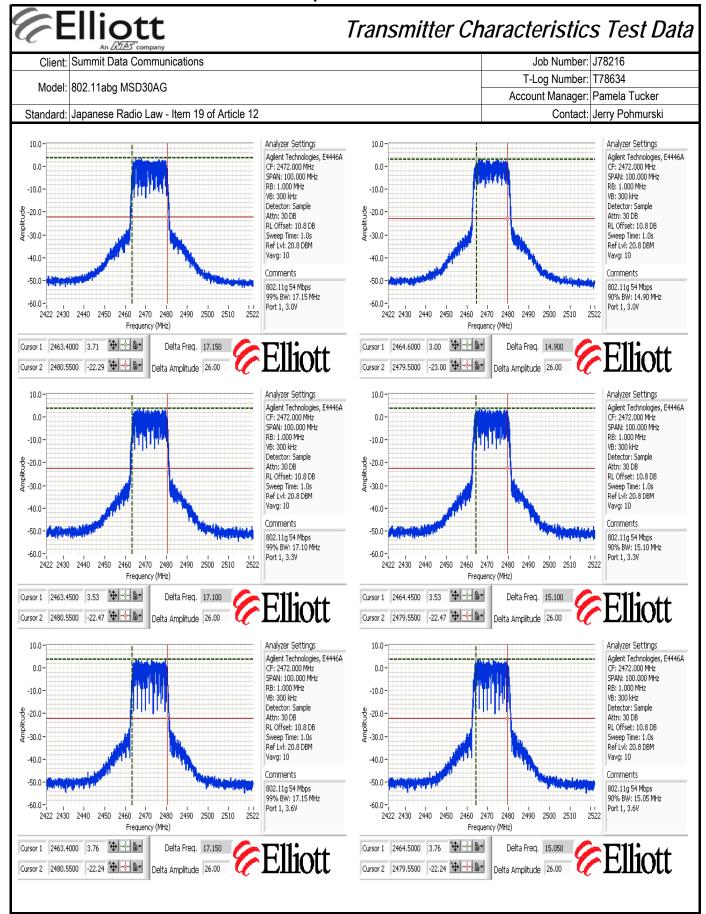
	Symbol Rate (Msym/s)	90% Signal Bandwidth	Spreading rate	Requirement
2400 - 2483.5 MHz:	0.250	14.90	59.6	Min 5


Page 36 of 68 May 17, 2010


Page 37 of 68 May 17, 2010


Page 38 of 68 May 17, 2010


Page 39 of 68 May 17, 2010


Page 40 of 68 May 17, 2010

Page 41 of 68 May 17, 2010

Page 42 of 68 May 17, 2010

Page 43 of 68 May 17, 2010

Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J78216
Model	802.11abg MSD30AG	T-Log Number:	T78634
Model.	602. Frang MSD30AG	Account Manager:	Pamela Tucker
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Run #3: Spurious and unwanted emissions

Date of Test: 3/5/2010 Test Location: Radio Lab Test Engineer: Mehran Birgani

Test Requirements

Frequency Range	Limit			
(MHz)	uW/MHz dBm/Ml			
30 - 2387	2.5	-26.0		
2387 - 2400	25.0	-16.0		
2483.5 - 2496.5	25.0	-16.0		
2496.5 - 12500	2.5	-26.0		

The limit is for a 1MHz measurement bandwidth.

Measurement Summary - Highest emissions in each operating mode

Frequency	Level	Antenna			Detector	Comments			
MHz	dBm	Port	Limit	Margin			Voltage	Channel	Mode
4823.770	-43.2	Aux	-26.0	-17.2	Peak		3.0	1	b
4873.290	-45.0	Aux	-26.0	-19.0	Peak		3.0	6	b
4942.980	-47.7	Aux	-26.0	-21.7	Peak		3.0	13	b
3217.240	-50.4	Aux	-26.0	-24.4	Peak		3.3	1	g
3250.250	-45.9	Aux	-26.0	-19.9	Peak		3.3	6	g
3296.100	-46.7	Aux	-26.0	-20.7	Peak		3.3	13	g

Measurements made at operating voltage that produced the highest output power.

Preliminary Measurements :

Instrument Settings: RB=VB=1MHz, Positive peak detector and maximum hold for a minimum of 10 sweeps, but until the spectrum displayed becomes stable and no new signals are observed.

The device transmits continuously so the analyzer sweep time is auto-coupled.

			ion frequency	0.05 ms	
Frequ	ency	(MHz)	Bandwid	lth (MHz)	Sweep
Start		Stop	RB	VB	
	30	1000	1	1	49 ms
10	00	2483.5	1	1	74 ms
23	74	2400	1	1	1 ms
2483	.5	2900	1	1	21 ms
29	00	6000	1	1	155 ms
60	00	12500	1	1	325 ms

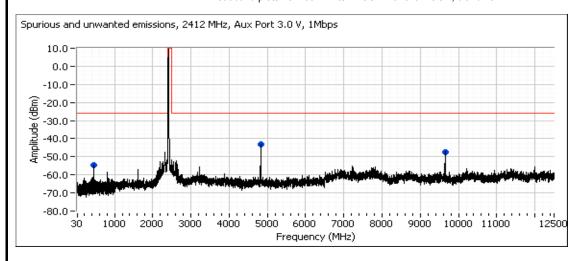
Channels 1 through 13

Page 44 of 68 May 17, 2010

Transmitter Characteristics Test Data

Client: Summit Data Communications	Job Number: J78216					
Model: 802.11abg MSD30AG	T-Log Number: T78634					
Model, 602.11aby MSD30AG	Account Manager: Pamela Tucker					
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmurski					

Preliminary measurement - 802.11b mode, Channels 1,6 and 13 (2400 - 2483.5MHz)

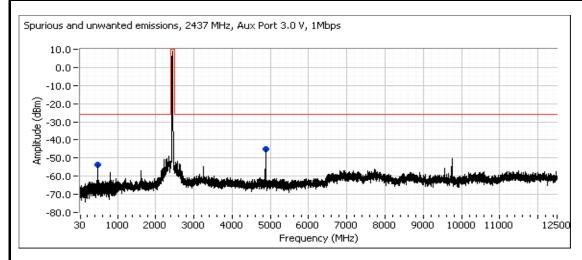

All plots generated using a 1MHz RBW

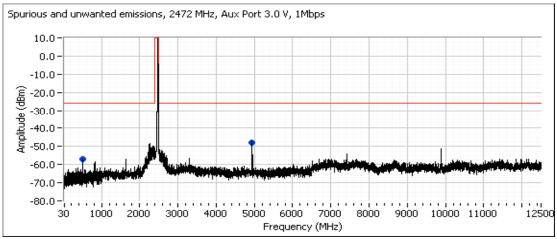
For emissions below 2387 MHz and above 2496.5 MHz the limit is 2.5uW/MHz (-26dBm/MHz).

From 2387 - 2400 MHz the limit is 25uW/MHz (-16dBm/MHz). From 2483.5 - 2496.5 MHz the limit is 25uW/MHz (-16dBm/MHz).

Frequency	Level	Antenna			Detector	Comments	Operating	Operating
MHz	dBm	Port	Limit	Margin			Voltage	Channel
451.217	-54.4	Aux	-26.0	-28.4	Peak		3.0	Ch 1, 1Mbps
476.230		Main	-26.0	-27.6	Peak		3.3	Ch 6, 1Mbps
476.230		Aux	-26.0	-27.8	Peak		3.0	Ch 6, 1Mbps
476.230		Aux	-26.0	-28.5	Peak		3.6	Ch 6, 1Mbps
476.230		Main	-26.0	-28.6	Peak		3.6	Ch 6, 1Mbps
476.230	-54.6	Main	-26.0	-28.6	Peak		3.0	Ch 6, 11Mbps
476.230		Main	-26.0	-28.9	Peak		3.0	Ch 6, 1Mbps
476.230	-55.0	Aux	-26.0	-29.0	Peak		3.3	Ch 6, 1Mbps
479.232	-57.8	Main	-26.0	-31.8	Peak		3.3	Ch 6, 11Mbps
511.248		Aux	-26.0	-31.0	Peak		3.0	Ch 13, 1Mbps
4823.770	-43.2	Aux	-26.0	-17.2	Peak		3.0	Ch 1, 1Mbps
4873.290	-45.0	Aux	-26.0	-19.0	Peak		3.0	Ch 6, 1Mbps
4873.290	-45.0	Aux	-26.0	-19.0	Peak		3.3	Ch 6, 1Mbps
4873.290	-45.5	Aux	-26.0	-19.5	Peak		3.6	Ch 6, 1Mbps
4873.290	-47.9	Main	-26.0	-21.9	Peak		3.6	Ch 6, 1Mbps
4873.290	-48.5	Main	-26.0	-22.5	Peak		3.3	Ch 6, 11Mbps
4873.290	-48.6	Main	-26.0	-22.6	Peak		3.3	Ch 6, 1Mbps
4873.290	-50.3	Main	-26.0	-24.3	Peak		3.0	Ch 6, 11Mbps
4873.290	-50.9	Main	-26.0	-24.9	Peak		3.6	Ch 6, 11Mbps
4875.120	-48.1	Main	-26.0	-22.1	Peak		3.0	Ch 6, 1Mbps
4942.980	-47.7	Aux	-26.0	-21.7	Peak		3.0	Ch 13, 1Mbps
9649.050	-47.3	Aux	-26.0	-21.3	Peak		3.0	Ch 1, 1Mbps

Broadband plots from 30MHz to 12.5GHz for channels 1, 6 and 13



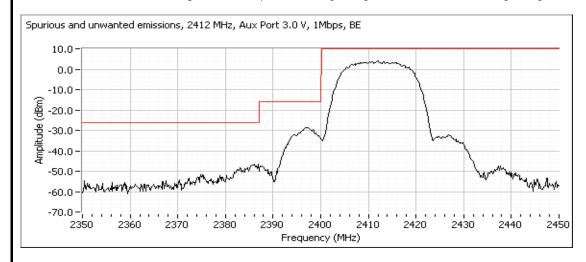

Page 45 of 68 May 17, 2010

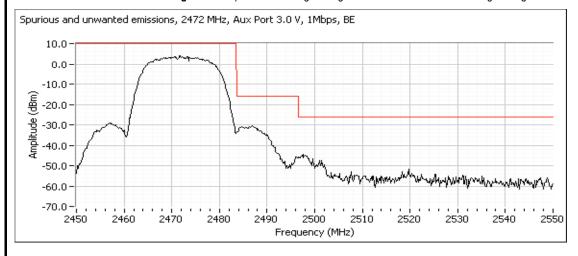
Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J78216
Modal:	802 11aha MCD20AC	T-Log Number:	T78634
wodei.	802.11abg MSD30AG	Account Manager:	Pamela Tucker
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Final (Zero-Span) measurement - 802.11b mode

Measurements are made only on those frequencies that exceed the limit during the preliminary measurements and at the operating voltage that produced the highest emission level. As there were no emissions above the limit during the preliminary (peak) scan, no final measurements were required.


Page 46 of 68 May 17, 2010


Transmitter Characteristics Test Data

741 Date Company						
Client: Summit Data Communications	Job Number: J78216					
Model: 802 11aha MCD20AC	T-Log Number: T78634					
Model: 802.11abg MSD30AG	Account Manager: Pamela Tucker					
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmurski					

Channel 1 - Emissions at band edge. Cursors are placed on the highest signal below 2387 MHz and the highest signal from 2387MHz to 2400 MHz.

Channel 13 emissions at band edge. Cursors placed on the highest signal above 2496.5 MHz and the highest signal between 2383.5 - 2496.5 MHz.

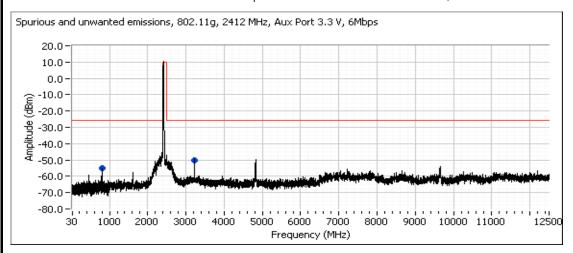
Page 47 of 68 May 17, 2010

Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J78216
Modal:	802 11aha MCD20AC	T-Log Number:	T78634
wodei.	802.11abg MSD30AG	Account Manager:	Pamela Tucker
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Preliminary measurement - 802.11g mode

All plots generated using a 1MHz RBW

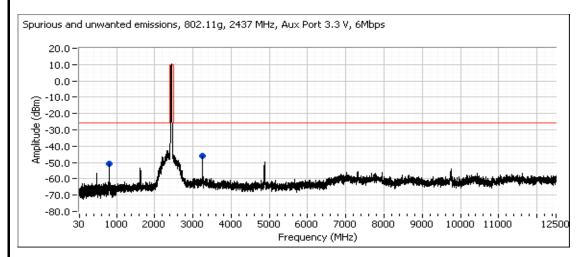

For emissions below 2387 MHz the limit is 2.5uW/MHz (-26dBm/MHz).

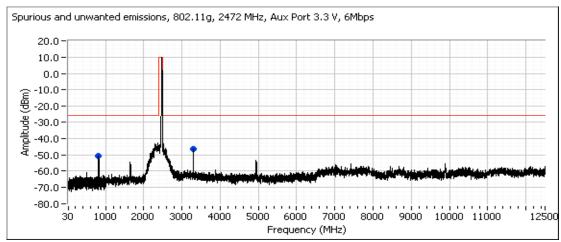
From 2387 - 2400 MHz the limit is 25uW/MHz (-16dBm/MHz). From 2483.5 - 2496.5 MHz the limit is 25uW/MHz (-16dBm/MHz).

Emissions Test Data - 802.11g Preliminary Measurements

LIIII SIOIIS I	Emissions rest Data - 002.119 Freminiary Measurements								
Frequency	Level	Antenna			Detector	Comments	Operating		
MHz	dBm	Port	Limit	Margin			Voltage		
797.396	-55.0	Aux	-26.0	-29.0	Peak		3.3	Ch 1, 6Mbps	
808.401	-50.9	Aux	-26.0	-24.9	Peak		3.6	Ch 6, 6Mbps	
816.405	-51.1	Aux	-26.0	-25.1	Peak		3.3	Ch 6, 54Mbps	
816.405	-51.9	Aux	-26.0	-25.9	Peak		3.6	Ch 6, 54Mbps	
817.406	-50.0	Aux	-26.0	-24.0	Peak		3.0	Ch 6, 6Mbps	
817.406	-50.2	Aux	-26.0	-24.2	Peak		3.0	Ch 6, 54Mbps	
818.907	-50.5	Aux	-26.0	-24.5	Peak		3.3	Ch 6, 6Mbps	
819.407	-50.6	Main	-26.0	-24.6	Peak		3.3	Ch 6, 6Mbps	
821.408	-50.5	Aux	-26.0	-24.5	Peak		3.3	Ch 13, 6Mbps	
3217.240	-50.4	Aux	-26.0	-24.4	Peak		3.3	Ch 1, 6Mbps	
3250.250	-45.9	Aux	-26.0	-19.9	Peak		3.3	Ch 6, 6Mbps	
3250.250	-46.0	Aux	-26.0	-20.0	Peak		3.6	Ch 6, 54Mbps	
3250.250	-46.0	Aux	-26.0	-20.0	Peak		3.3	Ch 6, 54Mbps	
3250.250	-46.1	Aux	-26.0	-20.1	Peak		3.6	Ch 6, 6Mbps	
3250.250	-46.3	Aux	-26.0	-20.3	Peak		3.0	Ch 6, 6Mbps	
3250.250	-46.3	Aux	-26.0	-20.3	Peak		3.0	Ch 6, 54Mbps	
3250.250	-46.8	Main	-26.0	-20.8	Peak		3.3	Ch 6, 6Mbps	
3296.100	-46.7	Aux	-26.0	-20.7	Peak		3.3	Ch 13, 6Mbps	

Broadband plots from 30MHz to 12.5GHz for channels 1, 6 and 13



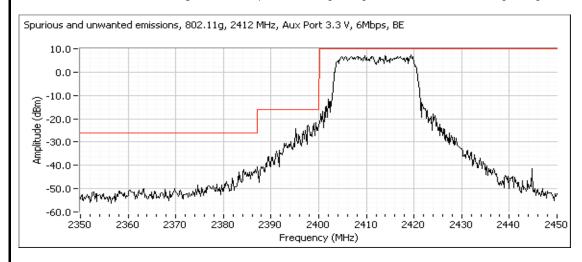

Page 48 of 68 May 17, 2010

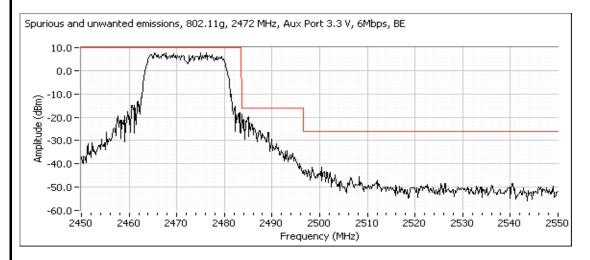
Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J78216
Modal:	802 11aha MCD20AC	T-Log Number:	T78634
wodei.	802.11abg MSD30AG	Account Manager:	Pamela Tucker
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Final (Zero-Span) measurement - 802.11g mode

Measurements are made only on those frequencies that exceed the limit during the preliminary measurements and at the operating voltage that produced the highest emission level. As there were no emissions above the limit during the preliminary (peak) scan, no final measurements were required.


Page 49 of 68 May 17, 2010


Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J78216
Modal:	802 11aha MCD20AC	T-Log Number:	T78634
wodei.	802.11abg MSD30AG	Account Manager:	Pamela Tucker
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Channel 1 - Emissions at band edge. Cursors are placed on the highest signal below 2387 MHz and the highest signal from 2387MHz to 2400 MHz.

Channel 13 emissions at band edge. Cursors placed on the highest signal above 2496.5 MHz and the highest signal between 2383.5 - 2496.5 MHz.

Page 50 of 68 May 17, 2010

Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J78216
Modal:	802.11abg MSD30AG	T-Log Number:	T78634
wodei.	002. I Taby WSD30AG	Account Manager:	Pamela Tucker
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Run #4: Antenna Power

Date of Test: 3/5/2010 Test Engineer: Mehran Birgani

Test Location: Radio Lab

Test Procedure:

Step 1:Determine the frequency of the signal with the highest power spectral density

Instrument Settings: RB=1MHz, VB=3MHz, Span > Occupied bandwidth, peak detector, max hold, sampling points > 400.

Once the display has settled (no more peaks added) the marker is paced at the peak of the signal.

The spectrum analyzer center frequency is adjusted to the marker frequency (Mkr -> CF feature), the span is then set to zero span.

Step 2:Measure the output power

Instrument Settings: RB=VB=1MHz, continuous sweep, trace clear-write

The output power is the power measured by the average power meter connected to the IF output of the analyzer, corrected for the IF path loss, the value of the external attenuator (if used) and the duty cycle of the transmission sequence if the product is not transmitting continuously.

802.11b mode - initial measurements on center channel to determine worst-case mode and rf port with highest output power.

Channel Mode	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%
	Mode	FUIL	Glalli	Dala Nale	3.0 V	3.3 V	3.6 V
Center	802.11b	Main	-	1Mb/s	3.47 mw/MHz	3.31 mw/MHz	3.24 mw/MHz
Center	802.11b	Aux	-	1Mb/s	3.31 mw/MHz	3.31 mw/MHz	3.31 mw/MHz
Center	802.11b	Main	-	11Mb/s	3.18 mw/MHz	3.11 mw/MHz	3.11 mw/MHz
802.11b mod	de - final me	asurements.					
Low	802.11b	Main	-	1 Mb/s	3.24 mw/MHz	3.16 mw/MHz	3.16 mw/MHz
Center	802.11b	Main	-	1 Mb/s	3.47 mw/MHz	3.24 mw/MHz	3.24 mw/MHz
High	802.11b	Main	-	1 Mb/s	3.31 mw/MHz	3.24 mw/MHz	3.24 mw/MHz

Lowest Output Power: 3.16 mw/MHz Highest Output Power: 3.47 mw/MHz

Nominal Output Power: 4.74 mw/MHz

Deviation In Output Power: -33.2% to -26.8%

EIRP Calculation

Nominal Output Power: 4.74 mw/MHz

Nominal Output Power: 6.8 dBm/MHz Antenna Gain: 3.0 dBi

EIRP: 9.8 dBm/MHz

Page 51 of 68 May 17, 2010

Transmitter Characteristics Test Data

	Till Ball S company		
Client:	Summit Data Communications	Job Number:	J78216
Madal	902 11aha MCD20AC	T-Log Number:	T78634
woder.	02.11abg MSD30AG	Account Manager:	Pamela Tucker
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

802.11g mode - initial measurements on center channel to determine worst-case data rate Measurements in 802.11bg mode were used to determine which antenna port had the highest output power.

Mode Port	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%	
Would	1 011	Criairi		3.0 V	3.3 V	3.6 V	
802.11g mode - initial measurements on center channel to determine worst-case mode/antenna:							
802.11g	Main		6Mb/s	2.34 mw/MHz	2.24 mw/MHz	2.24 mw/MHz	
802.11g	Main		54Mb/s	2.16 mw/MHz	1.97 mw/MHz	1.97 mw/MHz	
de - final me	asurements.						
802.11g	Main		6 Mb/s	1.70 mw/MHz	1.70 mw/MHz	1.70 mw/MHz	
802.11g	Main		6 Mb/s	2.34 mw/MHz	2.24 mw/MHz	2.24 mw/MHz	
802.11g	Main		6 Mb/s	1.86 mw/MHz	1.74 mw/MHz	1.74 mw/MHz	
	802.11g 802.11g le - final me 802.11g 802.11g	le - initial measurements of 802.11g Main 802.11g Main le - final measurements. 802.11g Main 802.11g Main 802.11g Main	le - initial measurements on center chan 802.11g Main 802.11g Main le - final measurements. 802.11g Main 802.11g Main 802.11g Main	le - initial measurements on center channel to determine worst-case 802.11g	Node	Mode Port Chain Data Rate 3.0 V 3.3 V Ie - initial measurements on center channel to determine worst-case mode/antenna: 802.11g Main 6Mb/s 2.34 mw/MHz 2.24 mw/MHz 802.11g Main 54Mb/s 2.16 mw/MHz 1.97 mw/MHz Ie - final measurements. 802.11g Main 6 Mb/s 1.70 mw/MHz 1.70 mw/MHz 802.11g Main 6 Mb/s 2.34 mw/MHz 2.24 mw/MHz	

Lowest Output Power: 1.7 mw/MHz Highest Output Power: 2.3 mw/MHz

Nominal Output Power: 2.89 mw/MHz

Deviation In Output Power: -41.2% to -18.8%

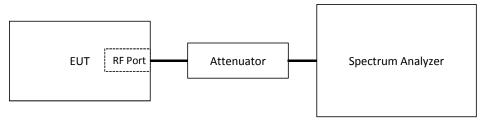
EIRP Calculation

Nominal Output Power: 2.89 mw/MHz

Nominal Output Power: 4.6 dBm/MHz Antenna Gain: 3.0 dBi

EIRP: 7.6 dBm/MHz

Page 52 of 68 May 17, 2010


E E	Eliott An <u>MZAS</u> company	Transmitter Characteristics Test Data			
Client:	Summit Data Communications	Job Number: J78216			
Model	902 11aha MSD20AC	T-Log Number: T78634			
wodei.	802.11abg MSD30AG	Account Manager: Pamela Tucker			
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmurski			

RADIO EQUIPMENT USED FOR 2.4 GHz BAND WIDE-BAND LOW-POWER DATA COMMUNICATIONS SYSTEM (Radio station using 2471 - 2497 MHz - Category GZ)

Summary of Results

Test Performed	Mode	Requirement	Measurement	Result
Frequency Error	802.11b	50ppm or better	802.11b: 4.05 ppm	Pass
Occupied bandwidth (2484 MHz)	802.11b	DSSS: 500kHz < BW < 26MHz	DSSS: 19.53 MHz	Pass
Spreading Rate (2484 MHz)	802.11b	10 or more	802.11b: 10.7	Pass
Spurious Emissions	802.11b	Below 2387 MHz: < 2.5uW/MHz 2387 - 2400 MHz < 25uW/MHz 2497-2510 MHz < 25uW/MHz Above 2496.5 MHz: 2.5uW/MHz	802.11b: 0.012 uW @ 4968.66MHz	Pass
Antenna power	802.11b	Maximum permitted: BW < 26MHz: 10mW/MHz BW < 38MHz: 5mW/MHz Power Tolerance: -80% to +20%	Rated Power: 4.05 mW/MHz Deviation: - 35 % to -25 %	Pass
EIRP	802.11b	Omni-directional antennas: maximum eirp is 12.15dBm/MHz	9.1 dBm/MHz	Pass

Test Configuration

Test Environment

Temperature: 15-30 °C
Rel. Humidity: 20-75 %
Pressure: 86-106 kPa

Nominal Supply Voltage 3.3 Vdc (provided by host device)

Duty Cycle and Transmission Cycle Time

Data Rate	Duty Cycle	Transmission cycle time
Mbs	%	ms
1	100	N/A
11	99.5	N/A

Page 53 of 68 May 17, 2010

Elliott

Transmitter Characteristics Test Data

Client: Summit Data Communications	Job Number: J78216
Model: 902 11aha MCD20AC	T-Log Number: T78634
Model: 802.11abg MSD30AG	Account Manager: Pamela Tucker
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmurski

Run #1: Frequency Error

Date of Test: 3/30/2010

Test Location: Radio Lab

Test Engineer: Mehran Birgani

The center frequency was measured at nominal and extreme voltage conditions.

For OFDM modulation with no provision for operating with an unmodulated signal measurements were made on a **modulated** signal at the top, center and bottom channels. The operating frequency was determined by measuring the frequency of the carrier observed at the center of the waveform that appears as a small peak within the central null. The analyzer was configured with RB=300Hz VB=10Hz, peak detector and max hold, as this gave the cleanest signal.

For CCK modulation with no provision for operating with an unmodulated signal measurements were made on a **modulated** signal at the top, center and bottom channels. The operating frequency was determined by measuring the frequency at the null created at the center of the signal. The analyzer was configured with RB=300Hz VB=10Hz, peak detector and max hold, as this gave the cleanest signal.

Nominal Frequency (MHz) - 802.11b								
Low Channel	Ce	enter Channel 2484.0		H	High Channel			
				,				
	Measured Frequency (MHz) Frequency Error (ppm)							
Voltage	Nominal -10%	Nominal	Nominal	+ 10%				
Voltage	3.0 V	3.3 V	3.6	V	3.0 V	3.3 V	3.6 V	
Center Channel	2484.010052	2484.010067	2484.00)9917	4.05	4.05	3.99	
Center Channel (Aux Port)	2484.009690	2484.009695	2484.00)9627	3.90	3.90	3.88	
				Damilian	/	50 O		

Requirement (ppm): 50.0

Notes:

All testing performed at 1Mbs for 802.11b (CCK).

Unless otherwise noted, TX Diversity switch was set to main only. Testing was performed on the Main connector.

Page 54 of 68 May 17, 2010

Elliott

Transmitter Characteristics Test Data

Client: Summit Data Communications	Job Number: J78216
Model: 802.11abg MSD30AG	T-Log Number: T78634
Wodel. ooz. 1 raby WSD30AG	Account Manager: Pamela Tucker
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmurski

Run #2: Occupied bandwidth and spreading bandwidth

Date of Test: 3/31/2010 Test Engineer: Mehran Birgani

Test Location: Radio Lab

The occupied bandwidth was measured with the spectrum analyzer configured according to the table below. The occupied bandwidth was determined from the 99% power bandwidth by determining the highest and lowest frequencies at which 99.5% of the power was captured and then subtracting the two numbers. the calculation was done by either the analyzer directly or via the software used to capture the plot. One plot for each mode tested is provided for reference.

The spreading bandwidth was measured with the spectrum analyzer configured according to the table below. The spreading bandwidth was the 90% power bandwidth determined by the highest and lowest frequencies at which 95% of the power was captured and then subtracting the two numbers. This calculation was done by either the analyzer directly or via the software used to capture the plot. One plot for each mode tested is provided for reference.

Instrument Settings and Test Requirements								
Modulation Type			Analyze	alyzer settings Bandwidth Requirem				
wodulation Type	Span	RB	VB	Other	Occupied	Spreading		
Direct Sequence (e.g. 802.11b)	52-91	≤ 780kHz	300kHz	Positive peak detector, max hold, sweep time auto ¹	≤ 26.0MHz	≥ 500 kHz		

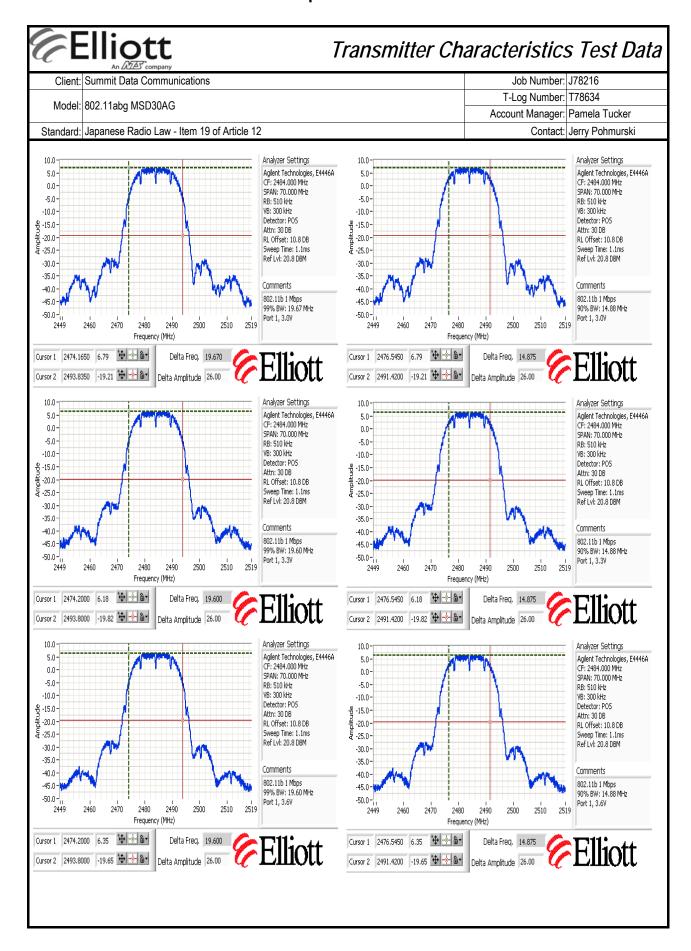
Note 1: For burst transmissions sweep time set to ensure dwell time in each bandwidth > transmission cycle time (sweep time = transmit cycle time x span/ measurement bandwidth)

Note 2: For burst transmissions trace set for max hold and detector set to positive peak

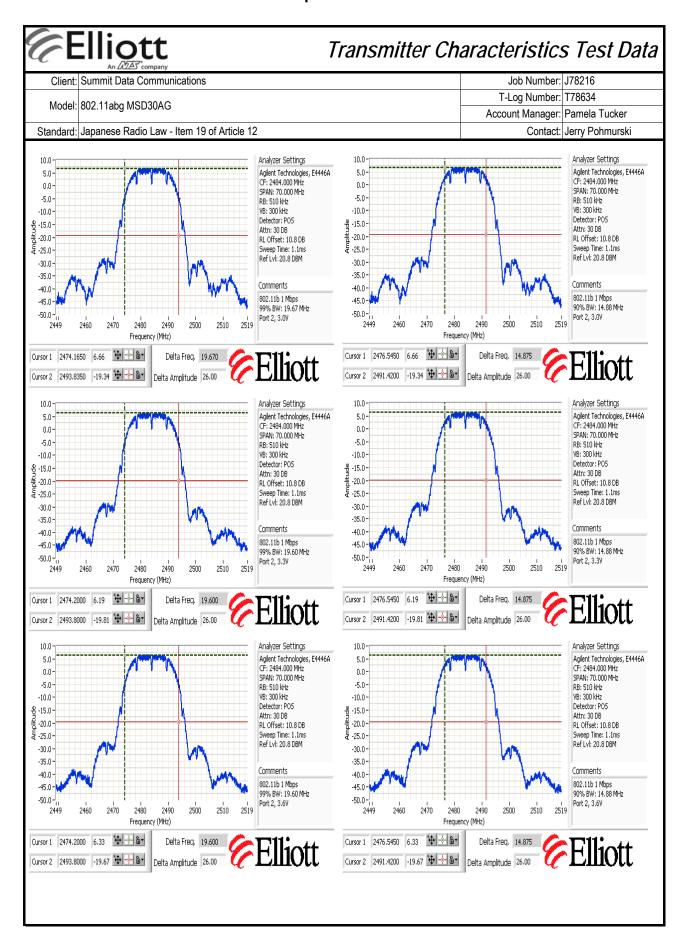
Took Do	N 44b 000 -41-	/Discot Commons	E001-1 - / - - - - - - - - - - -	- OCMILL-V	000/ Dum Danduridth
i est Re	Suits. 602.11D Mode	(Direct Sequence	. DUUKMZ ≥ Dangwigtn		- 99% Pwr Bandwidth

		,		- ,			
Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%
Charine	Mode	FUIL	Gilaili	Dala Nale	3.0 V	3.3 V	3.6 V
#14	802.11b	Main		1Mb/s	19.67	19.60	19.60
#14	802.11b	Main		11Mb/s	19.60	19.57	19.57
#14	802.11b	Aux		1Mb/s	19.67	19.60	19.60
#14	802.11b	Aux		11Mb/s	19.60	19.53	19.60

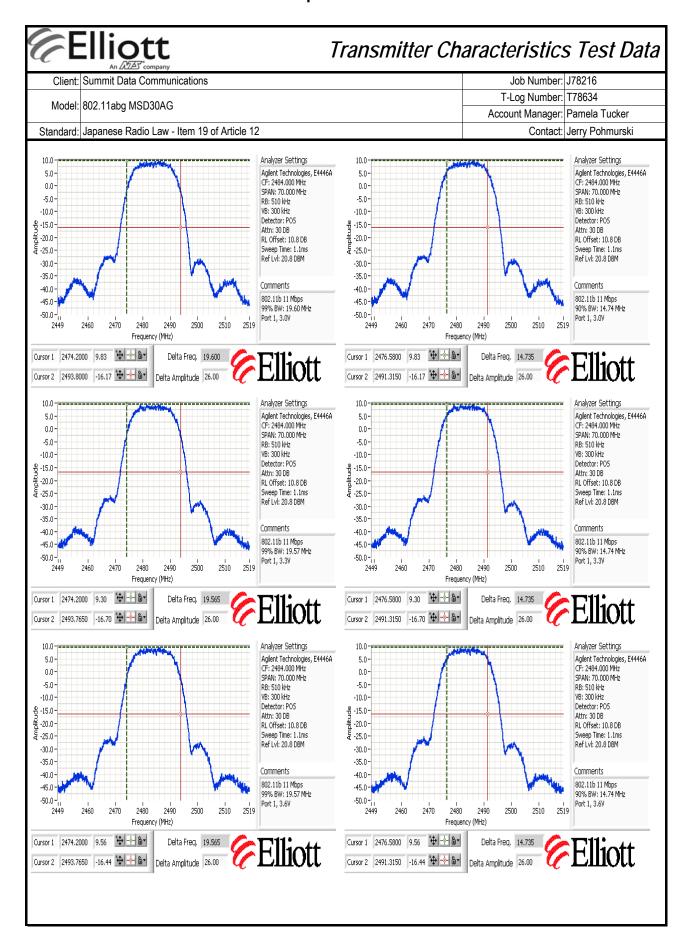
Test Results, 802,11b Mode (Direct Sequence, 500kHz ≤ bandwidth ≤ 26MHz) - 90% Pwr Bandwidth

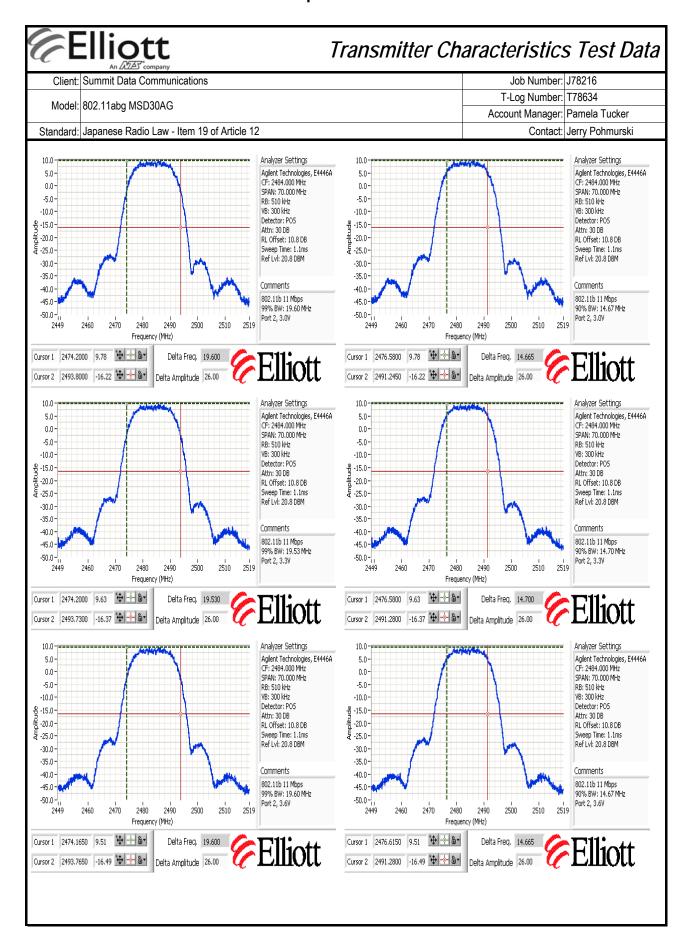

	rest results, coz: 115 mode (Birect Sequence, cooking 2 Sunamatin 2 Zoming) co // 1 mi Sunamatin										
Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%				
Charine	Mode	FUIL	Glalli	Dala Nale	3.0 V	3.3 V	3.6 V				
#14	802.11b	Main		1Mb/s	14.88	14.88	14.88				
#14	802.11b	Main		11Mb/s	14.74	14.74	14.74				
#14	802.11b	Aux		1Mb/s	14.88	14.88	14.88				
#14	802.11b	Aux		11Mb/s	14.67	14.70	14.67				

Spreading bandwidth


Symbol rate for 802.11b is 1Msym/s for 1Mb/s and 1.375Msym/s for data rates of 5.5Mb/s and above.

	Data rate	Symbol Rate (Msym/s)	90% Signal Bandwidth	Spreading rate	Requirement
2484 MHz:	1Mb/s	1.000	14.880	14.9	10.0
2484 MHz:	5.5Mb/s & 11Mb/s	1.375	14.670	10.7	10.0


Page 55 of 68 May 17, 2010


Page 56 of 68 May 17, 2010

Page 57 of 68 May 17, 2010

Page 58 of 68 May 17, 2010

Page 59 of 68 May 17, 2010

Elliott

Transmitter Characteristics Test Data

Client: Summit Data Communications	Job Number: J78216	
Model: 802.11abg MSD30AG	T-Log Number: T78634	
Model. ouz. Fraby MSD30AG	Account Manager: Pamela Tud	cker
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohm	urski

Run #3: Spurious and unwanted emissions

Date of Test: 4/6/2010 Test Location: Radio Lab Test Engineer: Mehran Birgani

Test Requirements

Frequency Range	Limit			
(MHz)	uW/MHz	dBm/MHz		
30 - 2458	2.5	-26.0		
2458 - 2471	25.0	-16.0		
2497 - 2510	25.0	-16.0		
2496.5 - 12500	2.5	-26.0		

The limit is for a 1MHz measurement bandwidth.

Measurement Summary - Highest emissions in each operating mode

Frequency	Level	Antenna			Detector	Comments			
MHz	dBm	Port	Limit	Margin			Voltage	Channel	Mode
4968.660	-49.3	Aux	-26.0	-23.3	Peak		3.0	14	b

Measurements made at operating voltage that produced the highest output power.

Preliminary Measurements :

Instrument Settings: RB=VB=1MHz, Positive peak detector and maximum hold for a minimum of 10 sweeps, but until the spectrum displayed becomes stable and no new signals are observed.

The device transmits continuously so the analyzer sweep time is auto-coupled.

The device transmits in a burst mode, sweep time is calculated for each band tested as shown below. The plots are composite plots of the individual frequency bands. so the analyzer sweep time is auto-coupled.

		Burst repetiti	on frequency	0.05 ms
Frequen	cy (MHz)	Bandwid	lth (MHz)	Sweep
Start	Stop	RB	VB	
30	1000	1	1	49 ms
1000	2458	1	1	73 ms
2408	2471	1	1	3 ms
2497	2560	1	1	3 ms
2510	6000	1	1	175 ms
6000	12500	1	1	325 ms

Preliminary measurement - 802.11b mode - GZ Band

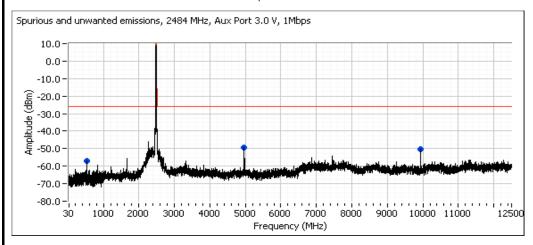
All plots generated using a 1MHz RBW

For emissions below 2458 MHz the limit is 2.5uW/MHz (-26dBm/MHz).

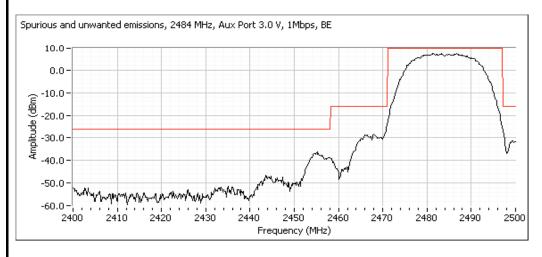
From 2458 - 2471 MHz the limit is 25uW/MHz (-16dBm/MHz). From 2497 - 2510 MHz the limit is 25uW/MHz (-16dBm/MHz).

Frequency	Level	Antenna			Detector	Comments	Operating	Operating
MHz	dBm	Port	Limit	Margin			Voltage	Channel
523.254	-57.2	Aux	-26.0	-31.2	Peak		3.0	14
4968.660	-49.3	Aux	-26.0	-23.3	Peak		3.0	14
9935,150	-50.1	Aux	-26.0	-24.1	Peak		3.0	14

Page 60 of 68 May 17, 2010



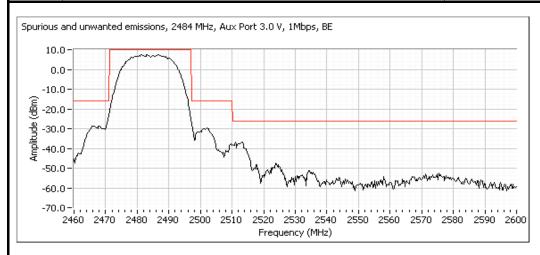
Transmitter Characteristics Test Data


Client: Summit Data Communications	Job Number: J78216
Madal: 900 11aha MCD20AC	T-Log Number: T78634
Model: 802.11abg MSD30AG	Account Manager: Pamela Tucker
Standard: Japanese Radio Law - Item 19 of Article 12	Contact: Jerry Pohmurski

Preliminary measurement scans - 802.11b mode - GZ Band

Broadband plot from 30MHz to 12.5GHz for channel 14

Plots showing emissions close to band edges with cursors on the highest points below 2458 MHz, above 2510 MHz and in the frequency ranges 2458 MHz - 2471 MHz and 2497 - 2510 MHz



Page 61 of 68 May 17, 2010

Transmitter Characteristics Test Data

Client: Summit Data Communications	Job Number:	J78216
Model: 802.11abg MSD30AG	T-Log Number:	T78634
Model. 602.1 Tably MSD30AG	Account Manager:	Pamela Tucker
Standard: Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Final (Zero-Span) measurement

Measurements are made only on those frequencies that exceed the limit during the preliminary measurements and at the operating voltage that produced the highest emission level. As there were no emissions above the limit during the preliminary (peak) scan, no final measurements were required.

Page 62 of 68 May 17, 2010

Elliott

Transmitter Characteristics Test Data

Client:	Summit Data Communications	Job Number:	J78216
Model:	802.11abg MSD30AG	T-Log Number:	T78634
	602. Fraby MSD30AG	Account Manager:	Pamela Tucker
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Run #4: Antenna Power

Date of Test: 4/5/2010 Test Engineer: Mehran Birgani

Test Location: Radio Lab

Test Procedure:

Step 1:Determine the frequency of the signal with the highest power spectral density

Instrument Settings: RB=1MHz, VB=3MHz, Span > Occupied bandwidth, peak detector, max hold, sampling points > 400.

Once the display has settled (no more peaks added) the marker is paced at the peak of the signal.

The spectrum analyzer center frequency is adjusted to the marker frequency (Mkr -> CF feature), the span is then set to zero span.

Step 2:Measure the output power

Instrument Settings: RB=VB=1MHz, continuous sweep, trace clear-write

The output power is the power measured by the average power meter connected to the IF output of the analyzer, corrected for the IF path loss, the value of the external attenuator (if used) and the duty cycle of the transmission sequence if the product is not transmitting continuously.

Channel	Mode	Port	Chain	Data Rate	Nominal -10%	Nominal	Nominal + 10%
Channe	Mode	FUIL	Chain	Dala Nale	3.0 V	3.3 V	3.6 V
14	802.11b	Main	-	1Mb/s	3.02 mw/MHz	2.69 mw/MHz	2.63 mw/MHz
14	802.11b	Aux	-	1Mb/s	2.95 mw/MHz	2.88 mw/MHz	2.88 mw/MHz
14	802.11b	Main	-	11Mb/s	3.04 mw/MHz	2.77 mw/MHz	2.77 mw/MHz

Lowest Output Power: 2.63 mw/MHz Highest Output Power: 3.04 mw/MHz

Nominal Output Power: 4.05 mw/MHz

Deviation In Output Power: -35.0% to -25.0%

EIRP Calculation

Nominal Output Power: 4.05 mw/MHz

Nominal Output Power: 6.1 dBm/MHz

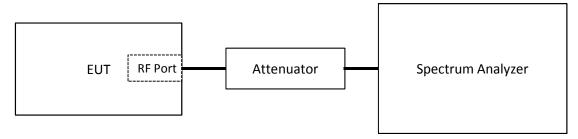
Antenna Gain: 3.0 dBi

EIRP: 9.1 dBm/MHz

Page 63 of 68 May 17, 2010

Elliott

Radio Test Data - Spurious Emissions


Client:	Summit Data Communications	Job Number:	J78216
Model:	902 11aha MCD20AC	T-Log Number:	T78634
	802.11abg MSD30AG	Account Manager:	Pamela Tucker
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

RADIO EQUIPMENT USED FOR 2.4 GHz BAND WIDE-BAND LOW-POWER DATA COMMUNICATIONS SYSTEM (Radio station using 2400 - 2483.5 MHz and 2471 - 2497 MHz)

Secondary Radiated Emissions

Test Performed	Mode	Requirement	Measurement	Result
Secondary Radiated Emissions		30-1000MHz: 4nW or less	0.01 nW	PASS
(Receiver Spurious Emissions)	-	>1000MHz: 20nW or less	0.36 nW	FASS

Test Configuration

Test Environment

Temperature: 15-30 °C
Rel. Humidity: 20-75 %
Pressure: 86-106 kPa

Secondary Radiated Emissions

Date of Test: 4/1/2010 Test Engineer: Mehran Birgani

Test Location: Radio Lab

Test Requirements							
	Limit						
Frequency Range (MHz)	Single	Chain	2x2 MIMO, per Chain		3x3 MIMO, per Chair		
()	nW	dBm/MHz	uW/MHz	dBm/MHz	uW/MHz	dBm/MHz	
30 - 1000	4.0	-54.0	2.0	-57.0	1.3	-58.8	
1000 - 12500	20.0	-47.0	10.0	-50.0	6.7	-51.8	

Measurement Summary - Emission with the least margin from all measurements

Measuremen	addiction duffindly Limbolot with the least margin from all measurements								
Frequency	Level	Antenna	Limit	Margin	Detector	Comments			
MHz	nW	Port	nW	dB			Voltage	Channel	
30-1000	0.01	0.0	4.0	-26.0	Peak	Highest level below 1GHz	3.3	6	
1000-12500	0.36	0.0	20.0	-17.4	Peak	Highest level above 1GHz	3.3	6	

Page 64 of 68 May 17, 2010

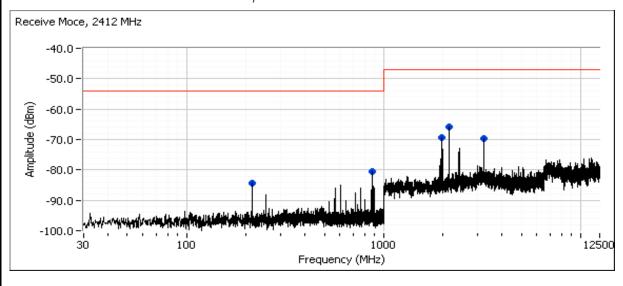
Radio Test Data - Spurious Emissions

Client:	Summit Data Communications	Job Number:	J78216
Model:	902 11aha MCD20AC	T-Log Number:	T78634
	302.11abg MSD30AG	Account Manager:	Pamela Tucker
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Preliminary Measurements:

Instrument Settings: RB and VB as detailed below, Positive peak detector and maximum hold for a minimum of 10 sweeps, but until the spectrum displayed becomes stable and no new signals are observed.

Sweep Settings

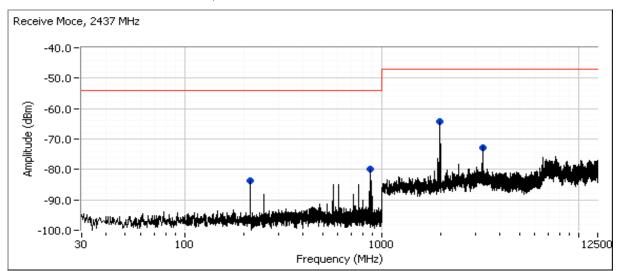

Frequer	icy (MHz)	Bandwid	lth (MHz)	Sweep Time
Start	Start Stop		VB	Sweep Time
30	1000	0.1	0.1	AUTO ms
1000	12500	1.0	1.0	AUTO ms

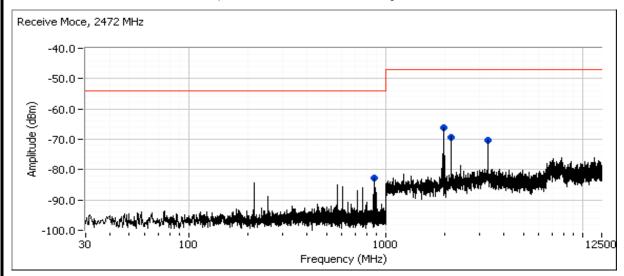
Frequency	Level	Antenna			Detector	Comments	Operating	Operating
MHz	dBm	Port	Limit	Margin			Voltage	Channel
214.361	-83.3	RF Port	-54.0	-29.3	Peak		3.3	CH 14
214.361	-83.7	RF Port	-54.0	-29.7	Peak		3.3	CH 6
214.361	-84.5	RF Port	-54.0	-30.5	Peak		3.3	CH 1
870.624	-80.3	RF Port	-54.0	-26.3	Peak		3.3	CH 14
870.947	-79.9	RF Port	-54.0	-25.9	Peak	0.010 nW	3.3	CH 6
870.947	-80.6	RF Port	-54.0	-26.6	Peak		3.3	CH 1
1977.490	-64.4	RF Port	-47.0	-17.4	Peak	0.36 nW	3.3	CH 6
1977.490	-68.7	RF Port	-47.0	-21.7	Peak		3.3	CH 14
1977.490	-69.5	RF Port	-47.0	-22.5	Peak		3.3	CH 1
2153.550	-66.0	RF Port	-47.0	-19.0	Peak		3.3	CH 1
3215.410	-69.8	RF Port	-47.0	-22.8	Peak		3.3	CH 1
3250.250	-73.0	RF Port	-47.0	-26.0	Peak		3.3	CH 6
3312.600	-70.3	RF Port	-47.0	-23.3	Peak		3.3	CH 14

Channel 13 plots showed no significant signals within 20dB of the limit.

Preliminary scans at the voltage extremes showed no significant difference in the level of receiver spurious emissions. Plots and data for nominal voltage are provided in full.

Broadband plots from 30MHz to 12.5GHz for channel #1

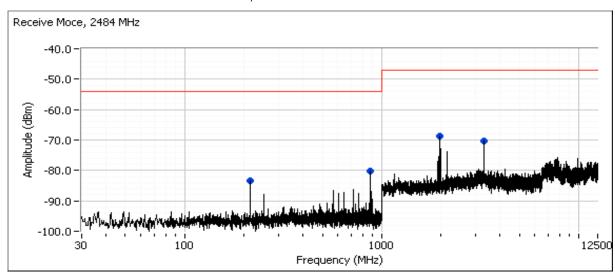

Page 65 of 68 May 17, 2010


Radio Test Data - Spurious Emissions

Client:	Summit Data Communications	Job Number:	J78216
Model:	902 11aha MCD20AC	T-Log Number:	T78634
	302.11abg MSD30AG	Account Manager:	Pamela Tucker
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Broadband plots from 30MHz to 12.5GHz for centre channel (channel 6)

Broadband plots from 30MHz to 12.5GHz for high channel (channel 13)



Page 66 of 68 May 17, 2010

Radio Test Data - Spurious Emissions

Client:	Summit Data Communications	Job Number:	J78216
Model:	902 11aha MCD20AC	T-Log Number:	T78634
	302.11abg MSD30AG	Account Manager:	Pamela Tucker
Standard:	Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

Broadband plots from 30MHz to 12.5GHz for channel 14

Final Measurements:

Instrument Settings: RB=VB=100kHz (below 1GHz) or RB=VB=1MHz (above 1GHz), Zero Span (Span = 0Hz), sample detector, single

Page 67 of 68 May 17, 2010

Test Equipment Used

An ATES company		
Client: Summit Data Communications	Job Number:	J78216
Model: 802.11abg MSD30AG	T-Log Number:	T78634
Widuel: 602.11aby WSD30AG	Account Manager:	Pamela Tucker
Standard: Japanese Radio Law - Item 19 of Article 12	Contact:	Jerry Pohmurski

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1071	09-Jun-10
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319	19-Aug-10
Rohde & Schwarz	Attenuator, 20 dB, 10W, DC-18 GHz	20dB, 10W, Type N	1795	03-Jun-10
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1796	03-Jun-10
Agilent	PSG Vector Signal Generator (250kHz - 20GHz)	E8267C	1877	24-Mar-12
Rohde & Schwarz	Power Sensor, 1 nW-20 mW, 10 MHz-18 GHz, 50ohms	NRV-Z1	2114	10-Nov-10
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS. B7J. HYX.	E4446A	2139	06-Jan-11

Page 68 of 68 May 17, 2010